Effect of Various Nonionic Surfactants Incorporated in Liposomes on Dermal Delivery of Hydrophilic Compound

2014 ◽  
Vol 1060 ◽  
pp. 12-16
Author(s):  
Worranan Rangsimawong ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Tanasait Ngawhirunpat

Various surfactants-containing vesicles have been widely used as a carrier in drug delivery to enhance skin penetration of encapsulated therapeutic agents. The purpose of this study was to investigate the effect of nonionic surfactants-containing liposome vesicles on the penetration of hydrophilic compounds through the porcine skin. Ultradeformable liposomes composed of phosphatidylcholine (PC), cholesterol (Chol) and various surfactants e.g. Tween 20, Labrasol and Gelucire 44/14) were prepared as NaFI carrier. The physicochemical characteristic of liposomes and in vitro skin penetration were investigated. The particle size of surfactant-containing liposome vesicles showed smaller particle sizes (36 to 54 nm) than conventional liposome (CLs) and had negative surface charge. The EE% and LE% order of surfactants incorporated in liposome formulations were: Labrasol liposomes (LALs) > Gelucire 44/14 liposomes (GELs) > Tween20 liposomes (TWLs) > CLs. The flux of NaFI from ultradeformable liposomes was significantly higher than from CLs. Among various liposomes, Labrasol containing ultradeformable liposomes showed the highest skin permeation in 24 h, and their flux was significantly higher (p < 0.05) than the flux of CLs. The result suggests that the surfactant-containing liposomes were small and deformable vesicles due to incorporating of an edge activators. In addition, surfactants could act as a penetration enhancer to promote dermal delivery of NaFI.

2006 ◽  
Vol 58 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Yu-Kyoung Oh ◽  
Mi Young Kim ◽  
Jee-Young Shin ◽  
Tae Woon Kim ◽  
Mi-Ok Yun ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 333 ◽  
Author(s):  
Zhou ◽  
Ichikawa ◽  
Ikeuchi-Takahashi ◽  
Hattori ◽  
Onishi

A novel anionic nanogel system was prepared using succinylated glycol chitosan-succinyl prednisolone conjugate (S-GCh-SP). The nanogel, named NG(S), was evaluated in vitro and in vivo. S-GCh-SP formed a nanogel via the aggregation of hydrophobic prednisolone (PD) moieties and the introduced succinyl groups contributed to the negative surface charge of the nanogel. The resultant NG(S) had a PD content of 13.7% (w/w), was ca. 400 nm in size and had a -potential of −28 mV. NG(S) released PD very slowly at gastric pH and faster but gradually at small intestinal pH. Although NG(S) was easily taken up by the macrophage-like cell line Raw 264.7, it did not decrease cell viability, suggesting that the toxicity of the nanogel was very low. The in vivo evaluation was performed using rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis. NG(S) and PD alone were not very effective at 5 mg PD eq./kg. However, NG(S) at 10 mg PD eq./kg markedly suppressed colonic damage, whereas PD alone did not. Furthermore, thymus atrophy was less with NG(S) than with PD alone. These results demonstrated that NG(S) is very safe, promotes drug effectiveness and has low toxicity. NG(S) has potential as a drug delivery system for the treatment of ulcerative colitis.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2907
Author(s):  
Yanling Zhang ◽  
Majella E. Lane ◽  
David J. Moore

Polyethylene glycols (PEGs) and PEG derivatives are used in a range of cosmetic and pharmaceutical products. However, few studies have investigated the influence of PEGs and their related derivatives on skin permeation, especially when combined with other solvents. Previously, we reported niacinamide (NIA) skin permeation from a range of neat solvents including propylene glycol (PG), Transcutol® P (TC), dimethyl isosorbide (DMI), PEG 400 and PEG 600. In the present work, binary and ternary systems composed of PEGs or PEG derivatives combined with other solvents were investigated for skin delivery of NIA. In vitro finite dose studies were conducted (5 μL/cm2) in porcine skin over 24 h. Higher skin permeation of NIA was observed for all vehicles compared to PEG 400. However, overall permeation for the binary and ternary systems was comparatively low compared with results for PG, TC and DMI. Interestingly, values for percentage skin retention of NIA for PEG 400:DMI and PEG 400:TC were significantly higher than values for DMI, TC and PG (p < 0.05). The findings suggest that PEG 400 may be a useful component of formulations for the delivery of actives to the skin rather than through the skin. Future studies will expand the range of vehicles investigated and also look at skin absorption and residence time of PEG 400 compared to other solvents.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 108
Author(s):  
Maddalena Sguizzato ◽  
Walter Pula ◽  
Anna Bordin ◽  
Antonella Pagnoni ◽  
Markus Drechsler ◽  
...  

This investigation aims to find lipid-based nanosystems to be used as tools to deliver manganese for diagnostic purposes in multimodal imaging techniques. In particular, the study describes the production and characterization of aqueous dispersions of anionic liposomes as delivery systems for two model manganese-based compounds, namely manganese chloride and manganese acetylacetonate. Negatively charged liposomes were obtained using four different anionic surfactants, namely sodium docusate (SD), N-lauroylsarcosine (NLS), Protelan AG8 (PAG) and sodium lauroyl lactylate (SLL). Liposomes were produced by the direct hydration method followed by extrusion and characterized in terms of size, polydispersity, surface charge and stability over time. After extrusion, liposomes are homogeneous and monodispersed with an average diameter not exceeding 200 nm and a negative surface charge as confirmed by ζ potential measurement. Moreover, as indicated by atomic absorption spectroscopy analyses, the loading of manganese-based compounds was almost quantitative. Liposomes containing NLS or SLL were the most stable over time and the presence of manganese-based compounds did not affect their size distribution. Liposomes containing PAG and SD were instable and therefore discarded. The in vitro cytotoxicity of the selected anionic liposomes was evaluated by MTT assay on human keratinocyte. The obtained results highlighted that the toxicity of the formulations is dose dependent.


2020 ◽  
Author(s):  
EDYTA MAKUCH ◽  
Anna Nowak ◽  
Andrzej Günther ◽  
Robert Pełech ◽  
Łukasz Kucharski ◽  
...  

Abstract The aim of the study was to determine the antioxidant activity and assess the lipophilicity and skin penetration of eugenyl chloroacetate (EChA), eugenyl dichloroacetate (EDChA), and eugenyl trichloroacetate (ETChA). Identification of the obtained products was based on gas chromatography (GC), infrared spectroscopy (FTIR/ATR), gas chromatography coupled with mass spectrometry (GC-MS), and the analysis of 13C-NMR and 1H-NMR spectra. The antioxidative capacity of the derivatives obtained was determined by the DPPH free radical reduction method, while the octanol/water partition coefficient (shake-flask method) was tested to determine the lipophilicity of these compounds. In the next stage of testing EDChA and ETChA–(compounds characterized by the highest degree of free radical scavenging), the penetration of DPPH through pig skin and its accumulation in the skin were evaluated. For comparison, penetration studies of eugenol alone as well as dichloroacetic acid (DChAA) and trichloroacetic acid (TChAA) were also carried out. The antioxidant activity (DPPH, ABTS, and Folin–Ciocalteu methods) of the fluid that penetrated through pig skin was also evaluated. The in vitro pig skin penetration study showed that eugenol derivatives are particularly relevant for topical application. The obtained derivatives were characterized by a high level of antioxidant activity estimated after 24 hours of conducting the experiment, which indicates long-term protection against reactive oxygen species (ROS) in the deeper layers of the skin.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Saleh A. Al-Suwayeh ◽  
Ehab I. Taha ◽  
Fahad M. Al-Qahtani ◽  
Mahrous O. Ahmed ◽  
Mohamed M. Badran

The current study was designed to develop a topical gel formulation for improved skin penetration of lornoxicam (LOR) for enhancement of its analgesic activity. Moreover, the effect of different penetration enhancers on LOR was studied. The LOR gel formulations were prepared by using hydroxylpropyl methylcellulose (HPMC) and carbopol. The carbopol gels in presence of propylene glycol (PG) and ethanol were developed. The formulated gels were characterized for pH, viscosity, and LOR release using Franz diffusion cells. Also,in vitroskin permeation of LOR was conducted. The effect of hydroxypropylβ-cyclodextrin (HPβ-CD), beta-cyclodextrin (β-CD), Tween 80, and oleic acid on LOR permeation was evaluated. The optimized LOR gel formulation (LORF8) showed the highest flux (14.31 μg/cm2/h) with ER of 18.34 when compared to LORF3. Incorporation of PG and HPβ-CD in gel formulation (LORF8) enhanced the permeation of LOR significantly. It was observed that LORF3 and LORF8 show similar analgesic activity compared to marketed LOR injection (Xefo). This work shows that LOR can be formulated into carbopol gel in presence of PG and HPβ-CD and may be promising in enhancing permeation.


Blood ◽  
1982 ◽  
Vol 60 (4) ◽  
pp. 845-850 ◽  
Author(s):  
F Sieber ◽  
SJ Sharkis

Abstract As we have shown previously, cocultures of bone marrow cells with large numbers of syngeneic thymocytes enhance erythroid colony formation in plasma clots, whereas cocultures with low numbers of thymocytes suppress erythroid colony formation. In this article, we present evidence that the enhancing and suppressing functions of thymocytes are most likely mediated by at least two separate subpopulations. When thymocytes were fractionated on the basis of cell surface density of the theta antigen, enhancing cells were limited to the high theta density fraction, whereas suppressing cells were accumulated in the low theta density fraction. When thymocytes were fractionated on the basis of negative surface charge, the enhancing cells were recovered among the more negatively charged cells. A short in vitro incubation with polyamino acids selectively abrogated the suppressor function.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 958
Author(s):  
Clarisse Brossard ◽  
Manuel Vlach ◽  
Elise Vène ◽  
Catherine Ribault ◽  
Vincent Dorcet ◽  
...  

Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction. The corresponding nanoparticles (NPs), varying by the nature of the peptide (GBVA10-9, CPB, and their scrambled peptides) and the absence or presence of poly(ethylene glycol) were also successfully formulated using nanoprecipitation technique. NPs were further characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and transmission electron microscopy (TEM), highlighting a diameter lower than 150 nm, a negative surface charge, and a more or less spherical shape. Moreover, a fluorescent probe (DiD Oil) has been encapsulated during the nanoprecipitation process. Finally, preliminary in vitro internalisation assays using HepaRG hepatoma cells demonstrated that CPB peptide-functionalized PMLABe NPs were efficiently internalized by endocytosis, and that such nanoobjects may be promising drug delivery systems for the theranostics of HCC.


2021 ◽  
Vol 22 (16) ◽  
pp. 8381
Author(s):  
Natallia V. Dubashynskaya ◽  
Sergei V. Raik ◽  
Yaroslav A. Dubrovskii ◽  
Elena V. Demyanova ◽  
Elena S. Shcherbakova ◽  
...  

Improving the therapeutic characteristics of antibiotics is an effective strategy for controlling the growth of multidrug-resistant Gram-negative microorganisms. The purpose of this study was to develop a colistin (CT) delivery system based on hyaluronic acid (HA) and the water-soluble cationic chitosan derivative, diethylaminoethyl chitosan (DEAECS). The CT delivery system was a polyelectrolyte complex (PEC) obtained by interpolymeric interactions between the HA polyanion and the DEAECS polycation, with simultaneous inclusion of positively charged CT molecules into the resulting complex. The developed PEC had a hydrodynamic diameter of 210–250 nm and a negative surface charge (ζ-potential = −19 mV); the encapsulation and loading efficiencies were 100 and 16.7%, respectively. The developed CT delivery systems were characterized by modified release (30–40% and 85–90% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro experiments showed that the encapsulation of CT in polysaccharide carriers did not reduce its antimicrobial activity, as the minimum inhibitory concentrations against Pseudomonas aeruginosa of both encapsulated CT and pure CT were 1 μg/mL.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Dan Tang ◽  
Yi Wang ◽  
Andy Wijaya ◽  
Boyan Liu ◽  
Ali Maruf ◽  
...  

Abstract The development of nanomedicines provides new opportunities for the treatment of atherosclerosis (AS) due to their great advantages such as the improved drug solubility, enhanced bioavailability and reduced side effects. Despite these advantages, nanomedicines are still facing some challenges. The problems remain in the short circulation life, lack of specific targeting and poor drug release controllability. In order to overcome the shortages of conventional nanomedicines, the combination of biomimetic strategy with smart nanoagents has been proposed. In light with the high reactive oxygen species (ROS) level in AS microenvironment and the fact that macrophages play a critical role in the pathogenesis of AS, we fabricated ROS-responsive biomimetic nanoparticles (NPs), which camouflaged macrophage membrane (MM) on ROS-responsive NPs loaded with rapamycin (RNPs) for potential application in AS therapy. The resulting ROS-responsive biomimetic NPs (MM/RNPs) exhibited favorable hydrodynamic size with negative surface charge, retained the functional proteins from MM, and showed ROS-responsive drug release. Because of the biomimetic camouflaging on surface, MM/RNPs could effectively escape from macrophages uptake and target to inflammatory endothelial cells. Meanwhile, MM/RNPs could inhibit the proliferation of macrophages and smooth muscle cells in vitro. Furthermore, the MM-coated NPs were found to be nontoxic in both cytotoxicity assay and in vivo toxicity evaluation. Consequently, these results demonstrated that MM/RNPs could be a potential candidate of drug delivery system for safe and effective anti-AS applications.


Sign in / Sign up

Export Citation Format

Share Document