The Performance Study of Waterborne Damping Coating

2015 ◽  
Vol 1088 ◽  
pp. 444-448
Author(s):  
Xiao Wang ◽  
Pei Min Hou ◽  
Yuan Hao Xu ◽  
Jian Lei

In this paper, waterborne damping coating with excellent performance was prepared by self-made acrylic resin, and its physical and mechanical properties, chemical resistance, and damping properties (damping factor) were studied.

2015 ◽  
Vol 16 (3) ◽  
pp. 528-533
Author(s):  
G. Martinyuk ◽  
O. Aksimentyeva ◽  
N. Skoreiko ◽  
V. Zakordonskyi

We investigated the processes of water absorption, chemical stability and microhardness of films of epoxy composites that contained as the polymer matrix the epoxy resin UP-655 and mineral fillers: graphite, mica, aluminum oxide at their content (0 - 30 % mass). It found that introduction of mineral fillers significantly affects on all complex of operating characteristics of the films. Increase of filler content, especially mica, to 20 %, resulting in slower process and reducing the quantity of absorbed moisture by films. In the study of physical and mechanical properties of filled epoxy composites was established that the introduction of mineral filler significantly affects their microhardness, and the nature of the exposure is determined by the type and filler content.


2017 ◽  
Vol 730 ◽  
pp. 412-417 ◽  
Author(s):  
Irina Garkina ◽  
Alexander Danilov ◽  
Yuri Skachkov

We considered the problems of mathematical modeling of composite materials in the example of the development of materials for the protection against ionizing radiation. Construction materials are provided as a complex system with the appropriate attributes. The structure and physico-mechanical properties of the material were determined by the results of the modeling of kinetic processes. Process of forming properties is described by the differential equation in deviations from the equilibrium state (as for dispersion system). It is taken into account the elastic and damping properties of the material. To predict the behavior of the building material and the formation of his private mathematical models are used a representation of the processes as of time series. It is given the algorithm for studies (with considering prehistory) of formation of the basic physical and mechanical properties of epoxy composites for radiation protection. We present an example of the identification of building materials with special properties. Approaches used effectively in the development of materials with special properties.


2021 ◽  
Vol 899 ◽  
pp. 688-693
Author(s):  
Viktor A. Lomovskoy ◽  
Anna S. Shorshina ◽  
Igor D. Simonov-Emelyanov ◽  
Anastasia A. Razzhivina

It is known that epoxy resins (ES) and materials based on them are widely used in various areas of natural economy due to their valuable properties: low shrinkage during curing, high adhesion to various materials, chemical resistance, good physical and mechanical properties, and excellent dielectric properties [1].


1990 ◽  
Vol 185 ◽  
Author(s):  
G.S. Wheeler ◽  
G.L. Shearer ◽  
S. Fleming ◽  
L.W. Kelts ◽  
A. Vega ◽  
...  

AbstractB72 acrylic resin/methyltrimethoxysilane (YMTMOS) mixtures are frequently employed as consolidants for deteriorated limestones, sandstones and marbles- The addition of B72 to MTMOS imparts adhesive properties to the consolidant but it is not known to what degree the B72 affects the reactions which MTMOS must undergo to form a solid polymer network. This paper examines the following chemical, physical, and mechanical properties in order to better understand B72/MTMOS systems: 1. viscosity 2. vapor pressure 3. reaction mechanism and kinetics 4. chemical nature of polymer solids 5. rupture moduli of polymer solids and 6. rupture moduli of stone/consolidant composites.


2012 ◽  
Vol 427 ◽  
pp. 26-31 ◽  
Author(s):  
Wen Jin Ding ◽  
Tong Jiang Peng ◽  
Ji Ming Chen

By utilizing chrysotile asbestos tailing from Shannan ore in Sichuan as the main raw material, diopside-based glass-ceramics were successfully synthesized in the laboratory by adding some limestone, quartz sand, Al2O3, H3BO3, Na2CO3 and CaF2. The optimum procedure for glass-ceramics was as follows: melting at 1400 for 60 min, sintering at 1100 for 120 min. Through the tests of physical and mechanical properties, the glass-ceramics materials with more crystalline phase had high density, fine performance of resisting compression (366MPa) and negligible water absorption. Through chemical resistance tests, the glass-ceramics samples showed strong corrosion resistance. Overall result indicated that it was a feasible attempt to produce glass-ceramics materials for building and decorative materials from chrysotile asbestos tailing.


2015 ◽  
Vol 63 (4) ◽  
pp. 397-404
Author(s):  
Graziella Morfim Schramm ALIGNANI ◽  
Juliana Maria Costa Nuñez PANTOJA ◽  
Jessica Mie Ferreira Koyama TAKAHASHI ◽  
Andréa Araújo de VASCONCELLOS ◽  
Marcelo Ferraz MESQUITA ◽  
...  

Objective: To evaluate the effect of aging in a hard denture reline (New Truliner) and an acrylic resin (Classic) after chemical and mechanical polishing. Methods: Eighty specimens were made, divided randomly between 8 groups: G1.Acrylic Resin Classic (RAC)/Mechanical Polishing (PM); G2.RAC/PM + thermocycling (TR); G3) RAC/Chemical Polishing (PQ); G4.RAC/PQ + TR; G5.New Truliner (NT)/PM; G6.NT/PM + TR; G7. NT/PQ; G8.NT/PQ + TR. The surface hardness was measured before and after polishing, and after TR. The impact resistance tests were measured after all applied treatments. The data were submitted to ANOVA and Tukey test (a=5%). Results: Regardless of the polishing, it was noted that RAC presented significantly higher surface hardness than NT; PM had higher hardness in both materials compared with PQ; on both polishing, the impact resistance of the RAC was higher than NT. Independently of TR test, the impact resistance of the materials that received PQ was higher than received PM. The PQ caused greater changes in properties than the PM. Conclusion: Aging and chemical and mechanical polishing influenced the physical and mechanical properties of hard denture reline and acrylic resin.


2012 ◽  
Vol 557-559 ◽  
pp. 493-496
Author(s):  
Yan Liu ◽  
Rui Feng Li ◽  
Hua Xin Peng ◽  
Zhi Wu Han

CSCNT is a new type carbon nanotube, which has better physical and mechanical properties than the traditional materials. In this study, the effect of the dispersion and concentration of cup-stacked carbon nanotubes on mechanical properties of the CSCNTs/epoxy nanocomposites were investigated. The epoxy resin system used in this study was a two component (resin and harder) Prime 20. The CSCNTs were dispersed into the Prime 20 by ultrasonic agitation and mechanical mixing together. And the morphologies of the fracture surface of CSCNTs/Prime 20 nanocomposites were observed by scanning electron microscope (SEM); damping behaviors of the nanocomposites were studied by DMA at frequency domain.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1983 ◽  
Author(s):  
Wei Liu ◽  
Lutao Lv ◽  
Zonglin Yang ◽  
Yuqing Zheng ◽  
Hui Wang

In this study, the filled natural rubber (NR) was prepared with organic montmorillonite (OMMT) and carbon black (CB). The effects of the amount of OMMT on the properties of CB/NR composites were investigated by measuring the physical and mechanical properties, compression set and compression heat properties, processing properties and damping properties. The formulation was optimized depending on the different conditions of end applications and the damping properties of rubber were maximized without affecting the other properties of the rubber. The results showed that the rubber composite system filled with 2 phr (parts per hundreds of rubber) OMMT had better mechanical properties and excellent damping performance.


2018 ◽  
Vol 12 (1) ◽  
pp. 946-951
Author(s):  
Firas Abd Kati

Background: For many dental and facial restorations, acrylic resins are the materials of choice because of their appropriate physical and mechanical properties. When making the ocular prosthesis from such materials, it is essential to add the perfect shade in order to match the colour of normal eye. This, however, might have a significant effect on the mechanical properties of acrylic resins. Objective: The purpose of this study was to assess the effect of adding the white oil paint (titanium dioxide) to clear acrylic resins on their impact strength. Methods: 20 samples were constructed from heat cured acrylic resins, and divided into two groups (control and experimental) and each group had 10 samples. The first group was made from clear acrylic resin without the addition of white oil paints, and the second group (experimental) comprised the addition of 1 ml of the white oil paints to acrylic samples. Such samples were prepared with dimensions of (80 mm X10 mm X4 mm) length, width, and thickness, respectively. All the samples were tested by the Charpy's impact strength test. They were exposed to the load till the fracture occurred. All the values were analyzed using SPSS version 20, and the independent T-test was used for comparison between the 2 groups. Results: A statistically significant decrease (P-value < 0.001) was found in the impact strength of acrylic resins after the addition of titanium dioxide oil paints (experimental group: 5.97 + 1.11, control group: 9.42+1.32 KJ/M2). Conclusion: This study concluded that the addition of titanium dioxide oil paint significantly reduces the impact of strength of the acrylic resin. It is suggested to use different stains which will have no negative effect on impact strength of the acrylic resin.


Sign in / Sign up

Export Citation Format

Share Document