Modeling of Building Materials as Complex Systems

2017 ◽  
Vol 730 ◽  
pp. 412-417 ◽  
Author(s):  
Irina Garkina ◽  
Alexander Danilov ◽  
Yuri Skachkov

We considered the problems of mathematical modeling of composite materials in the example of the development of materials for the protection against ionizing radiation. Construction materials are provided as a complex system with the appropriate attributes. The structure and physico-mechanical properties of the material were determined by the results of the modeling of kinetic processes. Process of forming properties is described by the differential equation in deviations from the equilibrium state (as for dispersion system). It is taken into account the elastic and damping properties of the material. To predict the behavior of the building material and the formation of his private mathematical models are used a representation of the processes as of time series. It is given the algorithm for studies (with considering prehistory) of formation of the basic physical and mechanical properties of epoxy composites for radiation protection. We present an example of the identification of building materials with special properties. Approaches used effectively in the development of materials with special properties.

2019 ◽  
Vol 964 ◽  
pp. 115-123
Author(s):  
Sigit Tri Wicaksono ◽  
Hosta Ardhyananta ◽  
Amaliya Rasyida ◽  
Feisha Fadila Rifki

Plastic waste is majority an organic material that cannot easily decomposed by bacteria, so it needs to be recycled. One of the utilization of plastic waste recycling is become a mixture in the manufacture of building materials such as concrete, paving block, tiles, roof. This experiment purpose to find out the effect of addition of variation of LDPE and PP thermoplastic binder to physical and mechanical properties of LDPE/PP/Sand composite for construction material application. In this experiment are using many tests, such are SEM, FTIR, compression strength, density, water absorbability, and hardness. the result after the test are the best composition of composite PP/LDPE/sand is 70/0/30 because its have compression strength 14,2 MPa, while density value was 1.30 g/cm3, for the water absorbability is 0.073%, and for the highest hardness is 62.3 hardness of shore D. From the results obtained, composite material can be classified into construction materials for mortar application S type with average compression strength is 12.4 MPa.


2019 ◽  
Vol 6 (4) ◽  
Author(s):  
Alla Erofeeva

Increasing attention is paid to the problem of increasing the durability of building materials and products used for the manufacture of transport structures. In this regard, the creation of building materials and products that improve their performance, increase efficiency, reduce material consumption, cost and labor intensity of production is a major task in the field of construction materials science. One of the ways to increase the durability of buildings and structures is the use of composite materials on a polymer binder. The article presents the results of research in the development of effective compositions of frame polymer composites based on epoxy binders modified with urea resins and amidopolyamines using local fillers for anti-corrosion protection of building structures. Presents the study of physico-chemical processes occurring in epoxy composites modified urea resin and amidopolyamine by the method of IR-spectroscopy. The dependence of changes in the properties of epoxy composites with the introduction of modifying additives was revealed. It was found that in epoxy polymer concrete urea resin serves as a plasticizer, and amidopolyamines are flexibilizers. Physical and mechanical properties of frames and frame composites on local organic and inorganic fillers are investigated. The behavior of materials under the influence of chemical and biological aggressive media has been studied, on the basis of which compositions are proposed that can ensure long-term and reliable operation of structures and structures in aggressive chemical and biological environments. The practical implementation of the developed compositions in the manufacture of protective coatings for building structures.


2018 ◽  
Vol 931 ◽  
pp. 475-480 ◽  
Author(s):  
Nikolay V. Lyubomirskiy ◽  
Stanisław Fic ◽  
Sergey I. Fedorkin

A technique for determining the modulus of elasticity of сonstruction materials on samples of small dimensions has been developed. Physical and mechanical properties of building materials based on calcareous-lime compositions of semi-dry pressing, hardening according to the principle of forced carbonization, depending on the prescription and technological factors of their production have been studied. It has been demonstrated that on the basis of these materials it is possible to obtain building products with compressive strength up to 30 MPa, tensile strength at bending up to 5 MPa and higher, and an elastic modulus up to 18 GPa.


2021 ◽  
Vol 13 (5) ◽  
pp. 2756
Author(s):  
Federica Vitale ◽  
Maurizio Nicolella

Because the production of aggregates for mortar and concrete is no longer sustainable, many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA) sourced from factories, recycling centers, and human activities such as construction and demolition works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and from the by-products of the manufacturing and recycling processes of building materials. A four-step methodology based on searching, screening, clustering, and summarizing was proposed. The clustering variables were the type of aggregate, mix design parameters, tested properties, patents, and availability on the market. The number and the type of the clustering variables of each paper were analysed and compared. The results showed that the mortars were mainly characterized through their physical and mechanical properties, whereas few durability and thermal analyses were carried out. Moreover, few fine RA were sourced from the production waste of construction materials. Finally, there were no patents or products available on the market. The outcomes presented in this paper underlined the research trends that are useful to improve the knowledge on the suitability of fine RA from building-related processes in mortars.


2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2015 ◽  
Vol 16 (3) ◽  
pp. 528-533
Author(s):  
G. Martinyuk ◽  
O. Aksimentyeva ◽  
N. Skoreiko ◽  
V. Zakordonskyi

We investigated the processes of water absorption, chemical stability and microhardness of films of epoxy composites that contained as the polymer matrix the epoxy resin UP-655 and mineral fillers: graphite, mica, aluminum oxide at their content (0 - 30 % mass). It found that introduction of mineral fillers significantly affects on all complex of operating characteristics of the films. Increase of filler content, especially mica, to 20 %, resulting in slower process and reducing the quantity of absorbed moisture by films. In the study of physical and mechanical properties of filled epoxy composites was established that the introduction of mineral filler significantly affects their microhardness, and the nature of the exposure is determined by the type and filler content.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


2021 ◽  
Vol 14 ◽  
Author(s):  
Menandro N. Acda

Background: High-density fiberboards (HDF) are widely used as a substitute for solid wood in furniture, cabinet, construction materials, etc. Wood fibers are often used in the production of HDF but the use of renewable materials has gained worldwide interest brought about by global pressure to pursue sustainable development. An abundant source of renewable fibers that can be used to produce HDF is keratin from waste chicken feathers. The goal of the study is to investigate the use of keratin fibers in combination with wood fibers to produce HDF. No or limited studies have been conducted in this area and if successful, it could offer an alternative utilization for the billions of kilograms of waste feather produced by the poultry industry. HDF is a high volume feather utilization that can reduce pollution and help solve solid waste disposal problems in many countries. Methods: A series of dry-formed HDFs containing varying ratios of wood and keratin fibers bonded by polyurethane resin were produced. The physical and mechanical properties of the HDFs were determined. Results : The properties of the HDFs were affected by varying ratios of wood particles and keratin fibers. Dimensional stability as indicated by low levels of thickness swelling (<4.6%) and water absorption (<10%) was observed. Internal bond (2.47 MPa), MOE (5.8 GPa) and MOR (45 MPa) values were higher or comparable to those reported in the literature. Conclusion: HDF formed using a combination of wood and keratin fibers bonded together by polyurethane resin to as much as 50% keratin fibers were dimensionally stable with stiffness and strength above the minimum requirements for general use HDF as prescribed by EN 622-5.


Author(s):  
Viola Hospodarova ◽  
Nadezda Stevulova ◽  
Vojtech Vaclavik ◽  
Tomas Dvorsky ◽  
Jaroslav Briancin

Nowadays, construction sector is focusing in developing sustainable, green and eco-friendly building materials. Natural fibre is growingly being used in composite materials. This paper provides utilization of cellulose fibres as reinforcing agent into cement composites/plasters. Provided cellulosic fibres coming from various sources as bleached wood pulp and recycled waste paper fibres. Differences between cellulosic fibres are given by their physical characterization, chemical composition and SEM micrographs. Physical and mechanical properties of fibre-cement composites with fibre contents 0.2; 0.3and 0.5% by weight of filler and binder were investigated. Reference sample without fibres was also produced. The aim of this work is to investigate the effects of cellulose fibres on the final properties (density, water absorbability, coefficient of thermal conductivity and compressive strength) of the fibrecement plasters after 28 days of hardening. Testing of plasters with varying amount of cellulose fibres (0.2, 0.3 and 0.5 wt. %) has shown that the resulting physical and mechanical properties depend on the amount, the nature and structure of the used fibres. Linear dependences of compressive strength and thermal conductivity on density for plasters with cellulosic fibres adding were observed.


Sign in / Sign up

Export Citation Format

Share Document