Effect of Grain Size on Microstructure and Orientation of Fe-25Mn-3Si-3Al Steel

2015 ◽  
Vol 1095 ◽  
pp. 107-110
Author(s):  
Yong Juan Dai ◽  
Jian Gang Wang ◽  
Hao En Mao ◽  
Zhen Li Mi ◽  
Chi Zhang

The typical Fe-25Mn-3Si-3Al TWIP steel with different microstructure scale were investigated. It was found When the grains size is up to 35μm in the 25Mn-3Si-3Al TWIP steel samples, the twinning induced plasticity (TWIP) effect can fully developed and results in above 80% elongation. grain size had a strong effect on the mechanical properties. It was concluded that with increasing grain size ultimate tensile strength decreases, while elongation increases obviously.The annealing twin has the twin’s orientation, during deformation the annealing twin has get orientation ready for deformation twins

2016 ◽  
Vol 838-839 ◽  
pp. 392-397 ◽  
Author(s):  
Pavel Kusakin ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Dmitri Molodov

The influence of thermo-mechanical treatment consisting of cold rolling followed by recrystallization annealing on the grain size and mechanical properties of a high-Mn TWIP steel was studied. An Fe-23Mn-0.3C-1.5Al TWIP steel (wt. %) was subjected to extensive cold rolling with a reduction of 80% (true strain of ∼1.6) and then annealed in the temperature interval ranging from 400 to 900 °C during 20 minutes. Recovery processes took place below 500 °C, partial recrystallization was evident at ~550°C and fully recrystallized structure evolved after annealing at 600 °C and higher. The static recovery resulted in a slight decrease in the yield strength from 1400 MPa to 1250 MPa and the ultimate tensile strength from 1540 MPa to 1400 MPa whereas the total elongation of 4% did not changed. The recrystallization development led to a drastic drop of strength and an increase in ductility. The yield strength of 225 MPa, the ultimate tensile strength of 700 MPa and the total elongation of 79% was obtained after annealing at 900 °C. Correspondingly, the grain size increased from 0.2 μm to 6.2 μm with increase in anneal temperature from 550 to 900°C.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


2011 ◽  
Vol 197-198 ◽  
pp. 655-661
Author(s):  
Ze Bin Yang ◽  
Ding Yi Zhu ◽  
Wei Fa Yi ◽  
Shu Mei Lin ◽  
Cheng Mei Du

We investigate the influence of grain size on mechanical properties in a Fe-9Ni-12Mn-2.5Si-1.0C TWIP steel by unidirectional tensile. Meanwhile the microstructures of the TWIP steel were observed and analyzed by optical microscope (OM) and transmission electron microscope (TEM). The experimental results show that the TWIP steel’s yield strength and tensile strength decrease with the increasing of grain size, whereas the plasticity increases with it. When the average grain size reaches to 27μm, the tensile strength is 1080MPa, the elongation percentage is 77%, and the strength-plasticity product achieves the 83160MPa•%. Steel’s strain hardening rate can be changed from three-stage to four-stage with the increasing of grain sizes, the areas of strain hardening by twin deformation mechanism are expanded. Through the microstructure observation we found that, coarse-grained TWIP steel conducts to twinning formation, the high density twins can increase the alloy’s ductility by splitting the grain.


Author(s):  
C Pandey ◽  
MM Mahapatra

In the present investigation, a systematic study has been undertaken with regard to the effects of tempering time on room temperature mechanical properties of P91 (X10CrMoVNNB9-1) steel. Samples cut from P91 (X10CrMoVNNB9-1) industrial pipe were normalized at 1040 ℃ for 40 min and then tempered at 760 ℃ for different tempering times starting from 2 h to 8 h. Detailed analysis of microstructure, particle size, inter-particle spacing, and secondary phase carbide particles of the tempered samples was conducted by secondary electron microscopy technique. Optical microscopy was also utilized to characterize the tempered samples and for the measurement of grain size. In order to reveal the various phases formed during tempering of P91 (X10CrMoVNNB9-1) steel, X-ray diffraction was carried out . To study the fracture surface morphology of tensile tested and impact tested specimen field-emission scanning electron microscopy was carried out. The effect of tempering time on the microstructural parameters revealed an increase in grain size up to 4 h of tempering and then decreased because of recrystallization. The coarsening of secondary phase carbide particles M23C6 was revealed with an increase in tempering time. As a consequence, yield strength, hardness, and ultimate tensile strength were observed to decrease with increase in the tempering time. However, a drastic change was observed in the yield strength, ultimate tensile strength, and toughness after tempering for 6 h. From the present study, it was concluded that optimum combination of yield stress, ultimate tensile strength, hardness, and toughness obtained after tempering at 760 ℃ for 6 h.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2013 ◽  
Vol 753 ◽  
pp. 473-476 ◽  
Author(s):  
Naoto Sakai ◽  
Kunio Funami ◽  
Masafumi Noda ◽  
Hisashi Mori ◽  
Kenji Fujino

In the present study, the grain refinement, grain growth behavior, and tensile properties of rolled and annealed AZX311 Mg alloys were investigated. The yield strength and ultimate tensile strength of the rolled material were 360 MPa and 370 MPa, respectively, and the total elongation was 5%. When annealing was performed at 423 K for 1hr, the yield strength and ultimate tensile strength were unchanged, but the elongation increased to 10%. Furthermore, the strength and elongation did not change for annealing temperatures of 473–673 K owing to Al2Ca precipitations.


2011 ◽  
Vol 682 ◽  
pp. 49-54
Author(s):  
Bin Chen ◽  
Chen Lu ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng

The Mg96Y3Zn1 alloy processed by equal channel angular pressing has been investigated. It was found that the Mg96Y3Zn1 alloy processed by ECAP obtained ultrafine grains and exhibits excellent mechanical properties. After ECAP, the average grain size of Mg96Y3Zn1 alloy refined to about 400 nm. The highest strengths with yield strength of 381.45MPa and ultimate tensile strength of 438.33MPa were obtained after 2 passes at 623K. It was found that cracks were preferentially initiated and propagated in the interior of X-phase during the tensile test. As a result, the elongation of alloy is decreased with pass number increasing.


2020 ◽  
Vol 62 (8) ◽  
pp. 793-802
Author(s):  
Şefika Kasman ◽  
Sertan Ozan

Abstract In the present study, AA 2024-T351 plates with a thickness of 6 mm were joined using the friction stir welding technique with three different tool rotational speeds and two different pin profiles. Microstructural features and mechanical properties of welded joints were investigated. The grains in recrystallized regions along the stir zone were observed to be almost with invariable sizes. The grain size was revealed to increase with the increase in tool rotational speed. The average grain size was observed to dramatically increase from 2.3 μm to 5.6 μm for welded joints produced with pentagonal shaped pin. All the welded joints were observed to contain defects; the presence of defects exhibited a negative effect on the tensile properties of the welded joint. Most of the defects were observed to localize at the root region of joints. The joint, welded with the tool rotational speed of 250 rpm using pentagonal shaped pin, exhibited ultimate tensile strength with a value of 365 MPa. The ultimate tensile strength of welded joints was found to be higher with the decrease in the tool rotational speed. The welding efficiency of joints was compared with the ultimate tensile strength of base metal; notably, welding efficiency values between 46 % and 80 % were achieved. Microstructural characterizations revealed that Al2Cu (θ phase), Al2CuMg (S phase), and AlCuFeMnSi, Al7Cu2Fe intermetallic particles were dispersed in the stir zone.


Sign in / Sign up

Export Citation Format

Share Document