Structural Properties of Sn-Doped ZnO Thin Films Deposited on Glass Substrate Using Sol-Gel Immersion Method

2015 ◽  
Vol 1109 ◽  
pp. 568-571
Author(s):  
Shafura Karim ◽  
Uzer Mohd Noor ◽  
M.H. Mamat ◽  
Shuhaimi Abu Bakar ◽  
Salman A.H. Alrokayan ◽  
...  

Tin-doped Zinc Oxide (Sn-doped ZnO) thin films were prepared using zinc acetate dehydrate as a starting material by sol-gel immersion method. The doping concentrations were varied at 0 at.%, 1.0 at.%, 2.0 at.% and 3.0 at.%. The synthesized samples were characterized by Field Emission Scanning Electron Microscopy (FESEM).

2019 ◽  
Vol 5 (2) ◽  
pp. 122
Author(s):  
Nur Jannah Idris

 In this work, a nanocomposite photocatalyst was fabricated by growing zinc oxide (ZnO) and titanium dioxide (TiO2) on the sand as a substrate. The initial sand/ZnO was fabricated via sol-gel immersion method for 4 h at 95℃. Furthermore, the sand/ZnO/TiO2 was fabricatedusing hydrothermal method for 5 h at 150℃. Based on field emission scanning electron microscopy (FESEM) analysis, the fabricated sand/ZnO/TiO2 consists of random formation of hexagonal ZnO nanorods and two pyramidal spindle ends of TiO2 nanorods. The addition of TiO2 on top of ZnO nanorods increased the number of active sites which enables more contaminants to be absorbed thus enhanced the photocatalysis process. Moreover, based on the micro-Raman spectra, the synthesized TiO2 was in rutile phase and the ZnO peak was unobservable due to the overlapping with TiO2 peak. Based on its morphological and structural properties, the fabricated sand/ZnO/TiO2 nanocomposite was potential to be applied as photocatalyst.


2015 ◽  
Vol 1109 ◽  
pp. 549-553
Author(s):  
Shafura Karim ◽  
Uzer Mohd Noor ◽  
Mohamad Hafiz Mamat ◽  
Shuhaimi Abu Bakar ◽  
Salman A.H. Alrokayan ◽  
...  

Tin-doped Zinc Oxide (Sn-doped ZnO) thin films were prepared using zinc acetate dehydrate as a starting material by sol-gel immersion method. The doping concentrations were varied at 0 at.%, 0.5 at.%, 1.0 at.%, 2.0 at.%, 3.0 at.% and 4.0 at.%. The synthesized samples were characterized by current-voltage (I-V) measurement and UV-VISS spectrometer.


2013 ◽  
Vol 832 ◽  
pp. 128-131
Author(s):  
Sharipah Nadzirah ◽  
Uda Hashim

Titania or titanium dioxide (TiO2) thin film has been synthesized via sol-gel method with monoethanolamine (MEA) as a catalyst. The mixing of titanium butoxide as a precursor, ethanol as a solvent and MEA were stirred using magnetic stirrer under ambient temperature [. The TiO2solution prepared then was deposited on SiO2substrates using spin-coater and the coated films were annealed at 600°C. Finally, both before and after annealed TiO2thin films were characterized using Field Emission Scanning Electron Microscopy (FESEM). The obtained results show the different TiO2particles formation before and after annealed.


2015 ◽  
Vol 1088 ◽  
pp. 81-85 ◽  
Author(s):  
T.N. Myasoedova ◽  
Victor V. Petrov ◽  
Nina K. Plugotarenko ◽  
Dmitriy V. Sergeenko ◽  
Galina Yalovega ◽  
...  

Thin SiO2ZrO2films were prepared, up to 0.2 μm thick, by means of the sol–gel technology and characterized by a Scanning electron microscopy and X-ray diffraction. It is shown the presence of monoclinic, cubic and tetragonal phases of ZrO2in the SiO2matrix. The crystallites sizes depend on the annealing temperature of the film and amount to 35 and 56 nm for the films annealed at 773 and 973 K, respectively. The films resistance is rather sensitive to the presence of NO2and O3impurity in air at lower operating temperatures in the range of 30-60°C.


2013 ◽  
Vol 667 ◽  
pp. 375-379 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on zinc oxide (ZnO) nanorods prepared using sol-gel immersion method immersed at different time. Immersion times have been varied 1~24 hr and the characteristics of each sample have been observed. The effects of immersion time on ZnO nanorods thin films have been studied in surface morphology and structural properties using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD), respectively.


2007 ◽  
Vol 997 ◽  
Author(s):  
Ashish Garg ◽  
Soumya Kar ◽  
Anju Dixit ◽  
D C Agrawal

AbstractIn this work, we report on the synthesis and characterization of thin films of (BiFeO3)1−x (PbTiO3)x (BFPT) solid solutions of compositions around morphotropic phase boundary (MPB) grown on platinized silicon (111) Pt/TiO2/SiO2/Si substrate by sol-gel based spin coating technique. The films were post-annealed at 700 and 750°C for 1 h in air. Morphological analysis of the films was carried out by scanning electron microscopy. Grazing incidence X-ray diffractometry revealed the perovskite structure of the films and peaks suggested the presence of rhombohedral structured pure BFPT phase in polycrystalline form. Scanning electron microscopy suggested that films annealed at 750degC had a denser microstructure as compared to those at 700°C. The room temperature dielectric constant of the films with composition of BF:PT :: 75:25 was measured to be ∼1200 at a frequency of 100 kHz.


2021 ◽  
Vol 43 (3) ◽  
pp. 253-253
Author(s):  
Mehmet zkan Mehmet zkan ◽  
Sercen Sadik Erdem Sercen Sadik Erdem

In this paper, silver (Ag)doped Zinc Oxide(ZnO) thin films were prepared on glass and silicon substrate by using a thermionic vacuum arc technique. The surface, structural, optical characteristics of silver doped thin films have been examined by X-Ray diffractometer (XRD), field emission scanning emission electron microscopy (FESEM), atomic force microscopy (AFM), and UV-Visible spectrophotometer. As a result of these measurements, Ag, Zn and ZnO reflection planes were determined for thin films formed on Si and glass substrate. Nano crystallites have emerged in FESEM and AFM images. The produced films have low transparency. The optical band gap values were measured by photoluminescence devices at room temperature for thin films produced on silicon and glass substrate. The band gap values are very close to 3.10 eV for Ag doped ZnO thin films. The band gap of un-doped ZnO thin film is approximately 3.3 eV. It was identified that Ag doped changes the properties of the ZnO thin film.


2013 ◽  
Vol 667 ◽  
pp. 495-500 ◽  
Author(s):  
I. Saurdi ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

In this work, ZnO thin films were deposited by RF Magnetron sputtering at different substrate temperatures in the range of 100-400oC on glass substrate. The thin films were characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and I-V measurement, for morphology and electrical properties study. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to study the structural and morphology of the thin films. The particle size varied from 41nm to 146nm showing that the nucleation of ZnO thin films as the substrate temperatures increased. Higher particle size was observed as the substrate temperatures increased up to 400oC as well as high conductivity of thin films at 400oC.


2011 ◽  
Vol 685 ◽  
pp. 6-12 ◽  
Author(s):  
Yu Long Zhang ◽  
Xian Peng Zhang ◽  
Rui Qin Tan ◽  
Ye Yang ◽  
Jun Hua Zhao ◽  
...  

Pristine and Al-doped zinc oxide nanopowders were synthesized via a surfactant-assisted complex sol-gel method, possessing a pure ZnO phase structure and controllable grain size which was characterized by X-ray diffraction and scanning electron microscopy. Using these nanopowders, the pristine and Al-doped ZnO magnetron sputtering targets were prepared following a mold-press, cold isostatical-press and schedule sintering temperature procedure. The relative density of these as-prepared targets was tested by Archimedes’ method on densitometer. All of the results were above 95 theory density percents, and the resistivity was tested on four-probe system at a magnitude of 10-2Ω cm. Related pristine ZnO thin films and Al-doped ZnO thin films were fabricated by magnetron sputtering method, respectively. The pristine and Al-doped ZnO films deposited on the quartz glass by dc sputtering owned a (002) orientation with a thickness of 350 nm at a deposition power of 100 W for two hours under an argon plasma. A good optical transparency above 80% and low resistivity of 1.60×10-3Ω cm were obtained with a deposition temperature of 573 K. The optical energy bandgap could be tailored by Al doping at 4 at.% Al.


Sign in / Sign up

Export Citation Format

Share Document