Experimental Investigations on Cylindrical Grinding Temperature of Silicon Carbide

2015 ◽  
Vol 1120-1121 ◽  
pp. 1251-1256 ◽  
Author(s):  
Chong Jun Wu ◽  
Bei Zhi Li ◽  
Steven Y. Liang ◽  
Jian Guo Yang

The grinding process requires a high energy expenditure per unit volume of material removed. The high temperature generated in abrasive processes is the main factor responsible for thermal damage to a ground surface. An investigation was undertaken to explore the temperature characteristics in high speed grinding (HSG) of silicon carbide (SiC) with a vitrified diamond wheel. A grindable thermocouople technique including a NI-DAQ device will be used to measure the grinding temperature. This paper will discuss the temperature characteristics in high speed grinding of SiC in detail and give an experiment-based temperature distribution model for SiC. A molecular dynamics simulation will be used to illustrate the effect of a high loading rate on SiC material’s mechanical property, which will further elaborate its unique HSG temperature characteristics. The experimental investigation will provide more practical application support in utilizing HSG technology in a high quality ceramic grinding.

2005 ◽  
Vol 291-292 ◽  
pp. 67-72 ◽  
Author(s):  
M. Ota ◽  
T. Nakayama ◽  
K. Takashima ◽  
H. Watanabe

There are strong demands for a machining process capable of reducing the surface roughness of sliding parts, such as auto parts and other components, with high efficiency. In this work, we attempted to grind hardened steel to a mirror-like surface finish with high efficiency using an ultra-high speed grinding process. In the present study, we examined the effects of the work speed and the grinding wheel grain size in an effort to optimize the grinding conditions for accomplishing mirror-like surface grinding with high efficiency. The results showed that increasing the work speed, while keeping grinding efficiency constant, was effective in reducing the work affected layer and that the grinding force of a #200 CBN wheel was lower than that of a #80 CBN wheel. Based on these results, a high-efficiency grinding step with optimized grinding conditions was selected that achieved excellent ground surface quality with a mirror-like finish.


2004 ◽  
Vol 851 ◽  
Author(s):  
R. Devanathan ◽  
F. Gao ◽  
W. J. Weber

ABSTRACTWe have performed molecular dynamics simulation of displacement events on silicon and carbon sublattices in silicon carbide for displacement doses ranging from 0.005 to 0.5 displacements per atom. Our results indicate that the displacement threshold energy is about 21 eV for C and 35 eV for Si, and amorphization can occur by accumulation of displacement damage regardless of whether Si or C is displaced. In addition, we have simulated defect production in high-energy cascades as a function of the primary knock-on atom energy and observed features that are different from the case of damage accumulation in Si. These systematic studies shed light on the phenomenon of non-ionizing energy loss that is relevant to understanding space radiation effects in semiconductor devices.


2016 ◽  
Vol 10 (2) ◽  
pp. JAMDSM0020-JAMDSM0020 ◽  
Author(s):  
Chongjun WU ◽  
Beizhi LI ◽  
Jingzhu PANG ◽  
Steven Y. LIANG

2014 ◽  
Vol 792 ◽  
pp. 115-120 ◽  
Author(s):  
Pál Rácz ◽  
Nándor Göbl ◽  
Daniel Horváth ◽  
Athanasios G. Mamalis

Electromagnetic forming is a high speed forming process, wherein the forming pressure is created by high energy density electromagnetic pulse. Besides direct shaping there are other application areas as well, so electromagnetic plastic forming is a potential field of creating joints between tube and rod-like components. Connecting components of dissimilar materials is an increasing demand in the manufacturing process of structures in the automotive industry. The application of new technologies, such as electrodynamic, especially electromagnetic forming, is a possible method to satisfy these demands. The article summarizes the most important fundamentals of electromagnetic forming; in particular, tube-rod joints, the main types of such joints; interference-fit and form-fit joints are described. Experiments, which were carried out producing tube-rod joints with electromagnetic forming, are also introduced. A new type of form-fit joints for tube-rod connections has been developed, which can withstand not only tensile loads but also torsion. Experiments and mechanical tests have proved the applicability of this kind of joints.


2012 ◽  
Vol 723 ◽  
pp. 202-207
Author(s):  
Jia Ming Ni ◽  
Bei Zhi Li ◽  
Jing Zhu Pang

In order to reconcile the contradiction between the ceramic grinding efficiency and surface integrity, high-speed grinding with diamond grinding wheel is supposed to be a solution. In this paper, first of all, a normal grinding force model is proposed based on the consideration of the material property and the grinding process parameters. It can be seen that an elevated grinding wheel velocity in combination of a higher workpiece speed can increase the machining rate while maintaining the desired surface integrity. After a series of grinding tests, a comprehensive measurement has been done to study the surface damage by the surface roughness, the microscope profile and the X-ray diffraction. In particular, the effect of the grinding parameters on the ground surface are analyzed and reported.


2018 ◽  
Author(s):  
Yao Liu ◽  
Beizhi Li ◽  
Yihao Zheng

The SiC ceramic ductile grinding, which can obtain crack-free ground surface, is a challenge in brittle material machining. To understand the brittle material ductile grinding mechanism in the nanoscale, a molecular dynamics (MD) model is built to study the single diamond grit grinding silicon carbide ceramic. Through analyzing the MD simulation process, the grit forces the SiC to deform and form the chip through the plastic deformation and flow. The ground surface has no crack on the surface and damage layer thickness is less than one atom layer under the nanoscale depth of cut, which indicates the nanogrinding can achieve the pure ductile grinding for the SiC ceramic and obtain a crack-free and high-quality ground surface. Grinding force, stress, temperature, and specific energy increase with the wheel speed and depth of cut due to the higher grinding speed and a smaller depth of cut can generate a higher density of defects (vacancies, interstitial atoms, and dislocations) on the workpiece, which can make the silicon carbide ceramic more ductile. The high wheel speed is favorable for the ductile grinding.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000159-000166 ◽  
Author(s):  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
E. Cilio ◽  
...  

The demands of modern high-performance power electronics systems are rapidly surpassing the power density, efficiency, and reliability limitations defined by the intrinsic properties of silicon-based semiconductors. The advantages of silicon carbide (SiC) are well known, including high temperature operation, high voltage blocking capability, high speed switching, and high energy efficiency. In this discussion, APEI, Inc. presents two newly developed high performance SiC power modules for extreme environment systems and applications. These power modules are rated to 1200V, are operational at currents greater than 100A, can perform at temperatures in excess of 250 °C, and are designed to house various SiC devices, including MOSFETs, JFETs, or BJTs. One newly developed module is designed for high performance, ultra-high reliability systems such as aircraft and spacecraft, and features a hermetically sealed package with a ring seal technology capable of sustaining temperatures in excess of 400°C. The second module is designed for high performance commercial and industrial systems such as hybrid electric vehicles or renewable energy applications, implements a novel ultra-low parasitic packaging approach that enables high switching frequencies in excess of 100 kHz, and weighs in at just over 130 grams (offering ~5× mass reduction and ~3× size reduction in comparison with industry standard power brick packaging technology). It is configurable as either a half or full bridge converter. In this discussion, APEI, Inc. introduces these products and presents practical testing of each.


2013 ◽  
Vol 423-426 ◽  
pp. 699-703 ◽  
Author(s):  
Jian He ◽  
Wen Feng Ding ◽  
Qing Miao ◽  
Biao Zhao ◽  
Zhi Wu Liu ◽  
...  

The present article deals with the surface topography during high speed grinding of particulate reinforced titanium matrix composites (PTMCs). Scanning electron microscopic images of the ground surface was analyzed. Combining the results presented in this paper, the following results could be summarized: (1) The reinforcing particles of PTMCs are removed by means of voids, pulled-out, fracture or crushed, and micro-cracks, which attributed to the plowing and shearing during high speed grinding. (2) The formation of the fracture pattern of PTMCs is formed due to the wear debris of the abrasion during high speed grinding.


Sign in / Sign up

Export Citation Format

Share Document