End-Milling of CFRP/Ti-6Al-4V with Electroplated cBN Tool

2016 ◽  
Vol 1136 ◽  
pp. 203-208
Author(s):  
Tatsuya Furuki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
Kiyofumi Inaba ◽  
...  

In recent years, the demand for carbon fiber reinforced plastics (CFRP), which have excellent mechanical properties, is increasing in various fields. In particular, the amount of CFRP used accounts for more than 50% of the body structure weight of the state-of-the-art airplanes. Moreover, in such airplanes, stack material, which is a combination of CFRP and titanium alloy (Ti-alloy), is frequently used. Therefore, a novel high-efficiency end-milling technology for cutting CFRP and Ti-alloy simultaneously is required. It is known that for restraining the occurrence of tool wear, diamond coating, which has high hardness, is useful. On the other hand, in the case of machining of Ti-alloy, several problems arise due to the machining heat. Consequently, in this study, we focus on cBN (cubic boron nitride). In order to compare diamond coating and cBN, end-mills, which were electroplated diamond grains, were also fabricated. In this study, as a cutting experiment, side milling of stack material, which is a combination of CFRP and Ti-6Al-4V, was carried out using the fabricated tools. Then, we discuss their cutting performance by measuring the CFRP temperature and chip temperature, tool wear, surface roughness, and surface integrity. As a result, it could be expected to precisely cut the stack material with the fabricated electroplated cBN end-mill. However, it is seen that improvement of the tool shape or the electrodeposition process is required.

2021 ◽  
Vol 15 (1) ◽  
pp. 4-16
Author(s):  
Shinnosuke Yamashita ◽  
Tatsuya Furuki ◽  
Hiroyuki Kousaka ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Recently, carbon fiber reinforced plastics (CFRP) have been used in various applications such as airplanes and automobiles. In CFRP molding, there are unnecessary portions on the outer area. Therefore, a machining process is required to remove them. Cutting and grinding are conventionally used in the finish machining of CFRPs. End-milling allows the removal of most of these portions. However, uncut fibers easily occur during end-milling. In contrast, a precise machined surface and edge are easily obtained using a grinding tool. Therefore, this research has developed a novel cubic boron nitride (cBN) electroplated end-mill that combines an end-mill and a grinding tool. This is a versatile tool that can cut and grind CFRPs by changing the direction of rotation of the tool. In this study, the effectiveness of the developed tool is investigated. First, the developed tool machined the CFRP by side milling. Consequently, cBN abrasives that were fixed on the outer surface of the developed tool did not detach in certain cutting conditions. Next, in order to generate a sharp edge on the CFRP and restrict the increase in the CFRP temperature with the cBN electroplated end-mill, the optimum abrasive size and grinding condition were investigated through the design of experiments. Moreover, the effectiveness of the developed tool was verified by comparing it with a conventional tool. As a result, smaller burrs and uncut fibers were observed after final machining with the developed tool under the derived optimum condition than those with conventional tools. However, the desired surface roughness could not be achieved as required by the airline industry. Therefore, oscillating grinding was applied. In addition, the formula of the theoretical surface roughness while using the developed tool was derived using the theory of slant grinding. As a result, the oscillating condition that led to the required surface roughness was obtained by theoretical analysis. In addition, the required value for the airline industry was achieved by oscillating grinding.


Author(s):  
Shinnosuke Yamashita ◽  
Tatsuya Furuki ◽  
Hiroyuki Kousaka ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
...  

Abstract Recently, the demand of carbon fiber reinforced plastics (CFRP) has been rapidly increased in various fields. In most cases, CFRP products requires a finish machining like cutting or grinding. In the case of an end-milling, burrs and uncut fibers are easy to occur. On the other hand, a precise machined surface and edge will be able to obtain by using the grinding tool. Therefore, this research has been developed a novel the cBN electroplated end-mill that combined end-mill and grinding tool. In this report, the effectiveness of developed tool was investigated. First, the developed tool cut the CFRP with side milling. As the result, the cBN abrasives that were fixed on the outer surface of developed tool did not drop out. Next, the end-milled surface of CFRP was ground with the developed tool under several grinding conditions based on the Design of Experiment. Consequently, the optimum grinding condition that can obtain the sharp edge which does not have burrs and uncut fibers was found. However, surface roughness was not good enough. Thus, an oscillating grinding was applied. In addition, the theoretical surface roughness formula in case using the developed tool was formularized. As the result, the required surface roughness in the airplane field was obtained.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1418 ◽  
Author(s):  
Maria Navarro-Mas ◽  
Juan García-Manrique ◽  
Maria Meseguer ◽  
Isabel Ordeig ◽  
Ana Sánchez

Although there are many machining studies of carbon and glass fiber reinforced plastics, delamination and tool wear of basalt fiber reinforced plastics (BFRP) in edge trimming has not yet studied. This paper presents an end milling study of BFRP fabricated by resin transfer molding (RTM), to evaluate delamination types at the top layer of the machined edge with different cutting conditions (cutting speed, feed rate and depth of cut) and fiber volume fraction (40% and 60%). This work quantifies delamination types, using a parameter Sd/L, that evaluates the delamination area (Sd) and the length (L), taking into account tool position in the yarn and movement of yarns during RTM process, which show the random nature of delamination. Delamination was present in all materials with 60% of fiber volume. High values of tool wear did not permit to machine the material due to an excessive delamination. Type II delamination was the most usual delamination type and depth of cut has influence on this type of delamination.


Author(s):  
Dong Min Kim ◽  
Eunju Park ◽  
Namhun Kim ◽  
Hyung Wook Park

The importance of the post-processing is increasing to remove the supporter afterward the additive manufacture process. The machining, known as the material removal process, achieve the high efficiency and rapid process as compared with the others techniques. This paper experimentally investigated the tool wear during the milling operations of the additive manufactured workpieces for the post-processing. The XRD analysis resulted that Inconel 718 powder used in the additive manufacturing has crystal structure FCC, which homologies the chemical compositions in wrought Inconel 718. The selective laser melting process had built the additive manufactured samples with two different orientations. Wrought Inconel 718 was the lowest hardness among the workpieces, whereas the severe tool wear was observed during the milling operation of wrought Inconel 718. The defects as the pores and cavities in the additive manufactured parts lead the low tool wears, even though the high hardness on the surfaces of the SLM Inconel 718. Further, the built orientation dominated the re-melted zone in the SLM parts, the contact between the tool and re-melted zone controlled the tool wears. Therefore, it should consider the built orientations to apply the machining as the post-processes.


2016 ◽  
Vol 10 (3) ◽  
pp. 356-363 ◽  
Author(s):  
Tetsuya Tashiro ◽  
◽  
Junsuke Fujiwara ◽  
Nao Asahi ◽  
◽  
...  

Because carbon fiber-reinforced plastics (CFRP) is used for various parts, it requires cutting. However, CFRP is well known to be difficult to cut. In this study, two types of tools were used to trim CFRP. At first, a conventional shaped tool was used. The cutting forces on the CFRP were measured and the influence of the fiber orientation relative to the cutting direction was investigated. Next, a herringbone-shaped tool was used and compared with the conventional end-mill. Specifically, cutting forces, burr formation, and surface roughness were measured to characterize the effect of this tool position. The characteristics of a diamond-coated tool were also investigated. The effectiveness of the diamond-coated herringbone tool was clarified. The main results obtained are as follows: 1) Cutting forces change by changing the tool axis position of the herringbone tool; the tool axis position is an important cutting condition. 2) By choosing the appropriate tool axis position, no uncut carbon fiber remains on the cut surface of the CFRP with the herringbone tool. 3) The burr formed under down-cut milling is smaller than that of up-cut milling at the cut end of CFRP by using the herringbone tool. 4) Small debonding of the diamond coating occurs on the cutting edge, but the wear value is very small, and the shape of the cutting edge is maintained despite small debonding of the diamond coating. 5) Diamond particles on the cutting edge do not work as those for grinding do. Sharp cutting edges with large rake angles and relief angles can cut the carbon fibers cleanly.


Author(s):  
Wei Ji ◽  
Jinkui Shi ◽  
Xianli Liu ◽  
Lihui Wang ◽  
Steven Y. Liang

The high-efficiency utilization of cutting tool resource is closely related to the flexible decision of tool life criterion, which plays a key role in manufacturing systems. Targeting a flexible method to evaluate tool life, this paper presents a data-driven approach considering all the machining quality requirements, e.g., surface integrity, machining accuracy, machining stability, chip control, and machining efficiency. Within the context, to connect tool life with machining requirements, all patterns of tool wear including flank face wear and rake face wear are fully concerned. In this approach, tool life is evaluated systematically and comprehensively. There is no generalized system architecture currently, and a four-level architecture is therefore proposed. Workpiece, cutting condition, cutting parameter, and cutting tool are the input parameters, which constrain parts of the independent variables of the evaluation objective including first-level and second-level indexes. As a result, tool wears are the remaining independent variables, and they are calculated consequently. Finally, the performed processes of the method are experimentally validated by a case study of turning superalloys with a polycrystalline cubic boron nitride (PCBN) cutting tool.


2016 ◽  
Vol 874 ◽  
pp. 463-468
Author(s):  
Tatsuya Furuki ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama ◽  
Keiji Ogawa ◽  
Kiyofumi Inaba ◽  
...  

Currently, carbon fiber reinforced plastics (CFRP) are being increasingly adopted in various fields. Thus, machining CFRP with high accuracy and high efficiency is required. In addition, machining stack materials composed of CFRP and titanium alloys is required. Therefore, in this study, a novel end-mill electroplated with a cubic boron nitride (cBN) abrasive, which has high thermal resistance, is proposed. In order to evaluate the influence of the base metal shape of the proposed end-mill on the machining process, several cBN-electroplated end-mills with different rake angles or chamfers were fabricated and used to cut CFRP. In addition, in order to evaluate the abrasive shape, a blocky abrasive was also electroplated on the end-mill. The results indicate that the negative rake angle is useful to restrain the progression of tool wear. However, in order to obtain the element of cutting and grinding, it is required that the rake angle should be positive. Moreover, the reasonable width of chamfer is effective for restraining the increase in CFRP temperature. Further, a sharp shaped abrasive can more effectively generate a CFRP with a sharp edge compared with a blocky shape abrasive.


Author(s):  
Vinothkumar Sivalingam ◽  
Jie Sun ◽  
Baskaran Selvam ◽  
Pradeep Kumar Murugasen ◽  
Bin Yang ◽  
...  

2016 ◽  
Vol 836-837 ◽  
pp. 318-325 ◽  
Author(s):  
Yu Hua Zhang ◽  
Shu Cai Yang ◽  
Chuang Feng

In order to achieve the high efficiency machining of titanium, the cutting force model is verified through the cutting experimental platform in machining cant and curved surface with ball end milling. And then the influence of cutting parameters and surface curvature on cutting force and tool wear are investigated. Finally, the prediction model of tool wear is established based on the orthogonal test and the least square method. This study proposes that the tool wear and each tooth feeding have a major impact on cutting force and that the convex surface from a small curvature to larger and the concave surface from a large curvature to smaller can effectively improve the life of tool in machining curved surface.


Author(s):  
Dinh Nguyen ◽  
Vadim Voznyuk ◽  
Mohammad Sayem Bin Abdullah ◽  
Dave Kim ◽  
Patrick Y. Kwon

Abstract This paper aims to investigate the effectiveness of several superhard ceramic coatings on carbide drills when drilling carbon fiber reinforced plastics (CFRP) composite/Ti-6Al-4V alloy (titanium or Ti) stacks. The drilling experiments of CFRP/Ti stack are conducted with diamond-like coating (DLC) coated, alternating layers of the nanocomposite of AlCrN & Si3N4 and TiN or (AlCrSi/Ti)N coated, and uncoated tungsten carbide drills. Tool wear evolution of each drill is measured qualitatively as well as quantitatively using the scanning electron and confocal laser scanning microscopes (CLSM) by interrupting after making certain numbers of hole. Based on our drilling experiments, the performance of each coating when drilling CFRP/Ti stack are discussed. Among these coated and uncoated drills, uncoated and DLC coated drills failed before making 5 holes while (AlCrSi/Ti)N coated drills performed the best making more than 80 holes. The DLC coating, despite of high hardness of DLC coating, does not provide any significant protection especially when drilling Ti layer.


Sign in / Sign up

Export Citation Format

Share Document