Research on the Tool Wear Mechanism of Cemented Carbide Ball End Mill Machining Titanium Alloy

2016 ◽  
Vol 836-837 ◽  
pp. 318-325 ◽  
Author(s):  
Yu Hua Zhang ◽  
Shu Cai Yang ◽  
Chuang Feng

In order to achieve the high efficiency machining of titanium, the cutting force model is verified through the cutting experimental platform in machining cant and curved surface with ball end milling. And then the influence of cutting parameters and surface curvature on cutting force and tool wear are investigated. Finally, the prediction model of tool wear is established based on the orthogonal test and the least square method. This study proposes that the tool wear and each tooth feeding have a major impact on cutting force and that the convex surface from a small curvature to larger and the concave surface from a large curvature to smaller can effectively improve the life of tool in machining curved surface.

2019 ◽  
Vol 13 (3) ◽  
pp. 232-240
Author(s):  
Zhixin Feng ◽  
Meng Liu ◽  
Guohe Li

Background: Calibration of cutting coefficients is the key content in modeling a mechanistic cutting force model. Generally, in modeling cutting force for ball end milling, the tangent, radial and binormal cutting force coefficients are each considered as a polynomial, respectively. This fact is due to the dependency between the cutting force coefficients and the cutting edge inclination angle which is variable in ball-end mills. Objective: This paper presents an approach to determine the polynomial cutting force coefficients. Methods: In this approach, the cutting force coefficients are expressed as explicit linear equations about the average slotting forces. After analysis of the least square regression method which is utilized in the cutting coefficients evaluation, the principle of cutting parameters choice in calibration experiment and the relationship between the order of polynomial and the number of experiments are presented. Besides, a lot of patents on identification of polynomial cutting coefficients for milling force model were studied. Results: Finally, a series of semi-slotting verification cutting tests were arranged, the measured force agrees well with the predicted force, which demonstrates the effectiveness of this approach. Conclusion: Based on the calibration method proposed in this paper, the cutting coefficients can be determined through (m+2) slotting experiments for m-degree shearing coefficients polynomial theoretically.


2011 ◽  
Vol 264-265 ◽  
pp. 1160-1165
Author(s):  
Anayet Ullah Patwari ◽  
A.K.M. Nurul Amin ◽  
Waleed Fekry Faris

Dynamic change in cutting force is one of the major causes of chatter formation in metal cutting which affect machining accuracy. Thus, accurate modeling of cutting force is necessary for the prediction of machining performance and determination of the mechanisms and machining parameters that affect the stability of machining operations. The present paper discusses the development of a mathematical model for predicting the tangential cutting force produced in endmilling operation of Ti6Al4V. The mathematical model for cutting force prediction has been developed in terms of the input cutting parameters cutting speed, feed rate, and axial depth of cut using response surface methodology (RSM). Effects of all the individual cutting parameters on cutting force as well as their interactions are investigated in this study. Central composite design was employed in developing the cutting force model in relation to the primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated.


2011 ◽  
Vol 188 ◽  
pp. 55-60
Author(s):  
J. Du ◽  
Zhan Qiang Liu

FGH95 is one kind of high-strength, thermal-resistant nickel-based superalloys fabricated by powder metallurgy (PM). It plays an increasingly important role in the development and manufacture of turbine discs. Due to the extreme toughness and work hardening characteristics of this kind of superalloy, the problem of machining FGH95 is one of ever-increasing magnitudes. This paper investigates the influence of cutting parameters on the cutting force, cutting temperature and tool wear during the end milling of PM nickel-based superalloy FGH95. The empirical formula for cutting force and cutting temperature of FGH95 are given out. Experimental results show that the cutting speed among milling parameters has the greatest influence on cutting forces and cutting temperatures. It is shown that the major tool wear mechanisms are combination interactions of abrasive wear, adhesion wear, micro-breakout and chipping.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


2013 ◽  
Vol 70 (9-12) ◽  
pp. 1835-1845 ◽  
Author(s):  
Junzhan Hou ◽  
Wei Zhou ◽  
Hongjian Duan ◽  
Guang Yang ◽  
Hongwei Xu ◽  
...  

2016 ◽  
Vol 836-837 ◽  
pp. 20-28
Author(s):  
Li Min Shi ◽  
Cheng Yang ◽  
Qi Jun Li

Titanium alloy Ti6Al4V has poor machinability, which leads to high unit cutting force and cutting temperature, rapid tool failure. In this study, the effect of the cutting speed, feed rate and cooling condition on cutting force and cutting temperature is critically analysed by turning experiment. At the same time, the relationship is established among tool wear, cutting force and cutting temperature. This investigation has shown that cutting speed is the decisive factor which increasing cutting force and cutting temperature. In the process of turning, tool wear results in high amounts of heat and mechanical stress, which leads to serious tool wear. The Minimal Quantity Lubrication reduces the frictional condition at the chip-tool, decreases cutting force and cutting temperature, and delays the tool failure.


2009 ◽  
Vol 69-70 ◽  
pp. 301-305
Author(s):  
Jing Shu Hu ◽  
Yuan Sheng Zhai ◽  
Fu Gang Yan ◽  
Yu Fu Li ◽  
Xian Li Liu

In the cutting process, cutting force is one of the important physical parameters, which affects the generation of cutting heat, tool life and surface precision of workpiece directly. In this paper an orthogonal design of experiment and subsequent data is analyzed using high speed finish hard cutting GCr15 whose hardness is 65HRC. Cutting speed is 200-400m/min, to study the influence of cutting parameters on cutting force, cutting force empirical model has obtained from least square method.


Author(s):  
Felicia Stan ◽  
Daniel Vlad ◽  
Catalin Fetecau

This paper presents an experimental investigation of the cutting forces response during the orthogonal cutting of polytetrafluoroethylene (PTFE) and PTFE-based composites using the Taguchi method. Cutting experiments were conducted using the L27 orthogonal array and the effects of the cutting parameters (feed rate, cutting speed and rake angle) on the cutting force were analyzed using the S/N ratio response and the analysis of variance (ANOVA). Statistical models that correlate the cutting force with process variables were developed using ANOVA and polynomial regression. The variation of the apparent friction coefficient was analyzed with respect to tool geometry and the cutting process. The results indicated that cutting and thrust forces increase with increasing feed rate, and decrease with increasing rake angles from negative to positive values and increasing cutting speed. A power law relationship between the apparent friction coefficient and the normal force exerted by the chip on the tool-rake face was identified, the former decreasing with an increasing normal force.


Sign in / Sign up

Export Citation Format

Share Document