Tungsten Inert Gas (TIG) Cladding of TiC-Fe Metal Matrix Composite Coating on AISI 1020 Steel Substrate

2020 ◽  
Vol 1159 ◽  
pp. 19-26
Author(s):  
Anil Kumar Das ◽  
Sujeet Kumar ◽  
Mayank Kumar Chaubey ◽  
Waquar Alam

TiC – Fe composite coating was produced on AISI 1020 steel by the tungsten inert gas (TIG) cladding process to increase the hardness and wear resistance properties of the substrate. In this paper authors have investigated the effect of process parameters on the microstructure and hardness value of the coated layer. In this TIG cladding process the variable parameter is only current, whereas the other parameters such as scanning speed, standoff distance, and voltage and gas flow rate are fixed. Fe and TiC powders were mixed in the proper ratio of 80wt% - 20wt% and 90wt% - 10wt% respectively. The microstructure and micro-hardness value of the samples were investigated by the scanning electron microscope (SEM) and Vickers micro hardness tester. The result of SEM shows the distribution of the coating powder in the cladded zone. Micro hardness profile shows the variation of the hardness value in the cladded zone as well as in the substrate. The hardness value decreases with increase in distance from top surface of the cladded layer, which is due to difference in cooling rate. Also, the hardness value of cladded layer decreases with increase in current from 140A to 150A. The maximum hardness value of cladded layer was achieved as 262 HV0.05 with 140A current and composition of 90 wt.% - 10wt% (Fe - TiC), which was nearly two times higher than that of the as received AISI 1020 steel substrate. Keywords TIG, Microstructure, Micro hardness, Titanium Carbide (TiC), Iron (Fe) powder.

2012 ◽  
Vol 468-471 ◽  
pp. 1163-1166 ◽  
Author(s):  
Wan Chang Sun

Ni-W-P-Al2O3 electroless composite coating was successfully co-deposited on 45 steel substrate using electroless plating. Optical microscope (OM), micro-hardness tester and potentiodynamic polarization were used to analyze the morphology, micro-hardness and corrosion resistance of the composite coating. The effect of Al2O3 concentration in the plating solution on the micro-hardness and corrosion resistance of the composite coating was mainly discussed. The results show that Al2O3 particles co-deposit with Ni-W-P homogeneously. The micro-hardness and corrosion resistance of the coating are improved with the increasing of Al2O3 concentration in the plating bath, and then decrease at a high Al2O3 concentration.


2017 ◽  
Vol 893 ◽  
pp. 340-344
Author(s):  
Sheng Dai ◽  
Dun Wen Zuo ◽  
Xian Rui Zhao ◽  
Jin Fang Wang

To improve the surface hardness and wear resistance of metal parts. Ni-based chromic carbidecomposite coating was prepared on the carbon steel (0.45 mass% C) substrates by laser cladding. Microstructure and wear properties of composite coatings were investigated by SEM, EDS, XRD, Vickers micro-hardness tester and wear machine. The results show that good metallurgical bonding between the Ni-based chromic carbidecomposite coating and carbon steel substrate. Micro-hardness of Ni-based Cr3C2 composite coating along the layer depth presents an evident stepladder distribution. The average micro-hardness of the laser clad coating is about 950 HV. The result of wear experiment shows that Ni-based Cr3C2 composite coating processes good wear resistance.


2010 ◽  
Vol 81 (12) ◽  
pp. 1056-1063 ◽  
Author(s):  
M. Ek ◽  
L. Wu ◽  
P. Valentin ◽  
D. Sichen

2009 ◽  
Vol 631-632 ◽  
pp. 187-192
Author(s):  
Atsushi Yumoto ◽  
Takahisa Yamamoto ◽  
Ichiro Shiota ◽  
Naotake Niwa

Hydroxyapatite (HAp) is very attractive in medical field. The objective of this study is to produce HAp/Ti composite coating with Supersonic Free-Jet PVD (SFJ-PVD). The SFJ-PVD is a technique to deposit nanoparticles with supersonic gas flow and to form a thick coating film. In a gas evaporation chamber, a source material is evaporated to form nanoparticles in an inert gas atmosphere. The nanoparticles are then carried to a substrate in a deposition chamber with an inert gas flow through a transfer pipe. The gas flow is generated by the pressure difference between the chambers and accelerated to the supersonic flow of 4.2 Mach through a specially designed supersonic nozzle. With SFJ-PVD, we obtain a uniform high-density HAp/Ti composite coating. XRD analysis reveals that the composite coating is composed of Ti and HAp. An in-vitro study was carried out to investigate the bioactivity of the HAp/Ti composite coating under simulated body fluid.


2016 ◽  
Vol 723 ◽  
pp. 450-453
Author(s):  
Xiao Feng Sun ◽  
Yuan Lin Huang ◽  
Wei Song ◽  
Ming Ming Sun

By combined process of hot dip aluminum and micro–arc oxidation, a multilayer composite coating was obtained on the surface of 20 steel plates. The micro-hardness, morphology, residual stress and thermal-shocking performance of the coating were investigated by HVS-1000 micro-hardness instrument, SEM, X-350 stress instrument and etc. The results showed that the micro-hardness of the coating appeared hard-soft-hard from surface to inner, the effective thermal-shock times of the coating was 130, its residual stress of the coating was 181.7 MPa after hot shock 80 times.


2016 ◽  
Vol 840 ◽  
pp. 331-335
Author(s):  
Nur Amira Mohd Rabani ◽  
Zakiah Kamdi

Cemented tungsten carbides have been paid much attention due its better mechanical properties with excellent combination of hardness and toughness characteristics. The hard WC particles in the coating provide hardness and wear resistance, while the ductile binder such as Co and Ni contribute to toughness and strength. WC-17wt.% Co and WC-9wt.% Ni powders have been sprayed by the HVOF method to form coatings approximately 300μm and 150μm thick onto AISI 1018 steel substrate. Both coatings have been prepared and supplied by an external vendor. The coatings were examined using optical microscope (OM), scanning electron microscope (SEM), and X-Ray diffraction (XRD). The hardness of both coatings were also measured using Vickers micro-hardness tester. The microstructure of the coatings has been analyzed and found to consist of WC, brittle W2C phase, metallic W phase, and amorphous binder phase of Co and Ni. It is found that WC-Ni has a higher hardness value compared to WC-Co due to high porosity distribution.


2014 ◽  
Vol 125 (2) ◽  
pp. 473-474 ◽  
Author(s):  
N. Akkas ◽  
F. Varol ◽  
E. Ferik ◽  
E. Ilhan ◽  
U. Ozsarac ◽  
...  

Author(s):  
Massab Junaid ◽  
Fahd Nawaz Khan ◽  
Muhammad Rashid Mirza ◽  
Mirza Nadeem Baig

Pulsed tungsten inert gas welding with full penetration was performed on 1.6 mm thick Ti–5Al–2.5Sn alloy sheet. Hole-drill strain measurement method was employed to measure the distribution of residual stresses across the weld line. Tensile tests were performed on the specimens sectioned in transverse direction of the welded sample. The evolved microstructure in the welded zone was investigated by metallography and X-ray diffraction. Transverse residual stresses of tensile nature were present at different depths below the surface and decreased the yield strength and ultimate tensile strength. However, this decrease was not dependent on the maximum value of transverse residual stress. Fracture location was found to be dependent on the micro-hardness profile and fracture took place in base metal where micro-hardness was the lowest. Furthermore, the presence of tensile residual stresses in the welded sample had no influence on the fractured surface morphology. Peak current and background current had a significant influence on the fusion zone width, heat-affected zone width, and fusion zone grain size.


2014 ◽  
Vol 1030-1032 ◽  
pp. 34-38 ◽  
Author(s):  
Meng Ru Liu ◽  
Han Chi Cheng ◽  
Lan Li ◽  
Shang Li ◽  
Chang Shun Huang

TiC-TiB2/ Fe matrix composite coatings were in-situ synthesized in the surface of Q235 steel substrate by TIG/cored-wire weld overlaying. The microstructure, micro-hardness and wear resistance of the weld overlay coating were investigated using SEM, XRD, Micro-hardness Tester and Pin-disc Wear Tester respectively. The results showed that the weld overlay coating presented a dense microstructure with defect-free of pore and crack, and better metallurgical bond with the substrate; TiC and TiB2 particulate distributed dispersively in Fe matrix of the weld overlay coatings. The highest Micro-hardness of the weld overlaying was 1657.58HV, which is 6 times higher than the substrate, and wear resistance are also improved at the room temperature under normal atmosphere conditions.


Sign in / Sign up

Export Citation Format

Share Document