Characterization of In Situ Synthesized TiC-TiB2 Reinforced Fe Matrix Wear-Resistant Coating by TIG Arc/Cored-Wires Weld Overlaying Technology

2014 ◽  
Vol 1030-1032 ◽  
pp. 34-38 ◽  
Author(s):  
Meng Ru Liu ◽  
Han Chi Cheng ◽  
Lan Li ◽  
Shang Li ◽  
Chang Shun Huang

TiC-TiB2/ Fe matrix composite coatings were in-situ synthesized in the surface of Q235 steel substrate by TIG/cored-wire weld overlaying. The microstructure, micro-hardness and wear resistance of the weld overlay coating were investigated using SEM, XRD, Micro-hardness Tester and Pin-disc Wear Tester respectively. The results showed that the weld overlay coating presented a dense microstructure with defect-free of pore and crack, and better metallurgical bond with the substrate; TiC and TiB2 particulate distributed dispersively in Fe matrix of the weld overlay coatings. The highest Micro-hardness of the weld overlaying was 1657.58HV, which is 6 times higher than the substrate, and wear resistance are also improved at the room temperature under normal atmosphere conditions.

2017 ◽  
Vol 893 ◽  
pp. 340-344
Author(s):  
Sheng Dai ◽  
Dun Wen Zuo ◽  
Xian Rui Zhao ◽  
Jin Fang Wang

To improve the surface hardness and wear resistance of metal parts. Ni-based chromic carbidecomposite coating was prepared on the carbon steel (0.45 mass% C) substrates by laser cladding. Microstructure and wear properties of composite coatings were investigated by SEM, EDS, XRD, Vickers micro-hardness tester and wear machine. The results show that good metallurgical bonding between the Ni-based chromic carbidecomposite coating and carbon steel substrate. Micro-hardness of Ni-based Cr3C2 composite coating along the layer depth presents an evident stepladder distribution. The average micro-hardness of the laser clad coating is about 950 HV. The result of wear experiment shows that Ni-based Cr3C2 composite coating processes good wear resistance.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


2016 ◽  
Vol 849 ◽  
pp. 677-682
Author(s):  
Hao Chen ◽  
Yang Rong Zhang ◽  
Zhu Huang

By plasma jet surface metallurgy, the thick composite coatings reinforced by in-situ TiC were produced on low carbon steel. Composition, microstructures and performance were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), micro-hardness tester and wear tester. The results showed that the excellent bonding between the coating and the carbon steel substrate was achieved by strong metallurgical interface. The microstructure of the coating is mainly composed of γ-(Fe, Ni) dendrite, M23C6, CrB and in-situ synthesized TiC ceramic particle. Because of the particulate reinforcement, the dispersion strengthening, refinement strengthening, micro-hardness and wear resistant of Fe-based coating can be enhanced.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3459 ◽  
Author(s):  
Baoming Shi ◽  
Shiming Huang ◽  
Ping Zhu ◽  
Changen Xu ◽  
Tengfei Zhang

In the present study, plasma spray welding was used to prepare an in-situ niobium carbide (NbC) reinforced Ni-based composite coating on the low carbon steel, and the phase composition and the microstructure of the composite coatings were studied. The wear resistance and the wear mechanism of the composite coatings were also researched by the wear tests. The results showed that the main phases of the composite coating were NbC, γ-Ni, Cr23C6, Ni3Si, CrB, Cr5B3, Cr7C3 and FeNi3. A number of fine in-situ NbC particles and numerous chromium carbide particles were distributed in the γ-Ni matrix. The increase in the mass fraction of Nb and NiCr-Cr3C2 could lead to the increase in NbC particles in the composite coatings. Due to the high hardness of NbC and chromium carbides, the micro-hardness and the wear resistance of the composite coatings were advanced. The composite coating with the powder mixtures of 20% (Nb + NiCr-Cr3C2) and 80% NiCrBSi had the highest micro-hardness and the best wear resistance in this study. The average micro-hardness reached the maximum value 1025HV0.5. The volume loss was 39.2 mm3, which was merely 37% of that of the NiCrBSi coating and 6% of that of the substrate under the identical conditions.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1438-1443 ◽  
Author(s):  
ZHENTING WANG ◽  
LILI CHEN ◽  
XIANYOU ZHANG

A metal matrix composite coating reinforced by ZrC - ZrB 2 particulates has been successfully fabricated utilizing the in situ reaction of Zr , B 4 C and Fe pre-placed mixed powders by gas tungsten arc welding (GTAW) cladding process. Various volume fraction of ZrC - ZrB 2 particulates composite coatings were produced through cladding different weight ratios of Zr + B 4 C (30%, 50%, 70%) to improve the wear resistance of AISI1020 steel substrate. The Microstructure of the coating was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrum (EDS), meantime microhardness and wear resistance at room temperature of the composite coating were examined by means of Microhardness Tester and Wear Tester, respectively. The results show that the main phases of the composite coating obtained by GTAW are ZrC , ZrB 2 and α- Fe , ZrC exhibits hexahedron and petal shapes, ZrC - ZrB 2 compound presents acicular and clubbed forms. With the increase of content of Zr + B 4 C , the maximum volume fraction of ZrC - ZrB 2 particulates can reach 16.5%, microhardness is up to 1300HV, and wear resistance is about twenty times higher than that of AISI1020 steel substrate.


2011 ◽  
Vol 189-193 ◽  
pp. 858-862 ◽  
Author(s):  
Wei Qiang Hu ◽  
Zong De Liu ◽  
Guang Yang ◽  
Yong Tian Wang ◽  
Hua Lei Zhang

A thick Fe-based amorphous and nanocrystalline composite coating was prepared by in-situ tungsten inert gas (TIG) cladding method. The results show that the cladding coating mainly consists of amorphous phase and nanocrystalline grains. The microstructure study shows that the Fe-based composite coatings have unique microstructure including nano-sized grains surrounded by nano-scale amorphous shell layer (encapsulated structure) and the homogeneously distributed dendrites/cellular crystals. The unique microstructure gives rise to the superior micro-hardness and wear resistance of the coating. The Fe-based coatings have great potential as promising wear-resistance structural materials used in electric power and cement industry.


2010 ◽  
Vol 139-141 ◽  
pp. 398-401
Author(s):  
You Feng Zhang ◽  
Jun Li

In situ reaction synthesized TiB reinforced titanium matrix composites were fabricated using rapid non-equilibrium synthesis techniques of laser cladding. TiB/Ti composite coating was treated on Ti-6Al-4V surface using Ti and B powder mixture by laser cladding. Microstructure and dry sliding wear behavior of the in situ synthesized TiB/Ti composite coatings were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive spectroscopy (EDS), hardness tester and friction and wear tester. The composite coatings consist of Ti, TiB and intermetallic compounds. The TiB reinforcement dispersed homogeneously in the composite coatings. The wear tests show that the friction coefficient and wear weight loss ratio of the coatings is lower than that of the Ti-6Al-4V alloy. The composite coating was reinforced by the in situ synthesized TiB ceramic particles. Based on the SEM observation, effects of scan speed on hardness and wear resistance of the laser cladding coatings were investigated and discussed.


2012 ◽  
Vol 271-272 ◽  
pp. 3-7
Author(s):  
Long Wei ◽  
Zong De Liu ◽  
Xin Zhi Li ◽  
Ming Ming Yuan ◽  
Cheng Yuan Zhong

Cr3C2-NiCr has high quality of wear resistant properties and is widely used in abrasive environment. In this paper, Cr3C2-NiCr coating was prepared on 45 steel by laser cladding technology. Analysis and research of the coatings were achieved by SEM and XRD to determine the main component and the different region on coatings. The hardness and the element component were investigated by micro-hardness tester and EDS. Abrasion tests were performed to contrast the wear resistance of two materials. The results indicate that the hardness of the coatings is nearly 3 times as the substrate. The coatings are well combined with the substrate and the phase of Cr3C2 has a large proportion in the coatings. Abrasion tests show that the average of wear rate on substrate is 5.2 times as the coatings.


2008 ◽  
Vol 373-374 ◽  
pp. 304-307
Author(s):  
Sen Yang ◽  
Ming Run Wang ◽  
Tao Gong ◽  
Wen Jin Liu

In order to improve wear resistance of carbon steel, laser cladding experiments were carried out using a 3kW continuous wave CO2 laser. The diameter of the laser beam was 3-5mm, the scanning velocity was 3-10mm/s, and the laser output power was 1.0-1.3kW. The experimental results showed that MoSi2/SiCP composites coating could be in-situ synthesized from mixture powders of molybdenum, silicon and SiC by laser cladding. A good metallurgical bond between the coating and the substrate could be achieved. The microstructures of the coating were mainly composed of MoSi2, SiC and FeSiMo phases. The average microhardness of the coating was about HV0.21300, about 6.0 times larger than that of steel substrate.


2007 ◽  
Vol 280-283 ◽  
pp. 1489-1492
Author(s):  
Zhen Ting Wang ◽  
Hua Hui Chen

Micro-nanostructured WC composite coatings were successfully fabricated by induced heating sintering method on the surface of Q235 steel .The microstructure, micro-hardness and the wear resistance of the composite coatings were studied .The results show that the microstructure of induced heat layer is mainly composed of Ni-based solid solutions and WC particles. And there exists excellent metallurgical bonding between coating and substrate. The wear resistance of micro-nanostructured WC Composite Coatings is increased by 1.5 times on an average as compared with that of micron.


Sign in / Sign up

Export Citation Format

Share Document