Surfactant-Mediated Epitaxial Growth of Metallic Thin Films

2010 ◽  
Vol 117 ◽  
pp. 55-61
Author(s):  
Masao Kamiko ◽  
Ryoichi Yamamoto

The effects of several surfactants on the homoepitaxial and heteroepitaxial growth of metallic films and multilayers have been studied and compared. Our measurements clearly revealed that pre-deposition of a small amount of surfactant prior to the adatom deposition changed thin film growth mode and structure. The pre-deposited surfactant enhanced layer-by-layer (LBL) growth of the homoepitaxial and heteroepitaxial growth of metallic films. The surfactant also enhanced the epitaxial growth of metallic multilayer.

2021 ◽  
Author(s):  
Kristina Ashurbekova ◽  
Karina Ashurbekova ◽  
Iva Saric ◽  
Evgeny Modin ◽  
Mladen Petravic ◽  
...  

We developed a thin film growth with a radical-initiated cross-linking of vinyl groups in a layer-by-layer manner via molecular layer deposition (MLD). The cross-linked film exhibited improved properties like 12% higher density and enhanced stability compared to the non-cross-linked film.


2017 ◽  
Vol 5 (21) ◽  
pp. 5090-5095 ◽  
Author(s):  
H. Wang ◽  
B. He ◽  
F. Liu ◽  
C. Stevens ◽  
M. A. Brady ◽  
...  

The first experimental observation of a rare re-entrant transition during COF thin film growth reveals independent nucleation and growth kinetic processes.


2015 ◽  
Vol 119 (48) ◽  
pp. 26968-26979 ◽  
Author(s):  
Tao Xu ◽  
Susanne Mohr ◽  
Max Amende ◽  
Mathias Laurin ◽  
Tibor Döpper ◽  
...  

1996 ◽  
Vol 363 (1-3) ◽  
pp. 161-165 ◽  
Author(s):  
Yasunori Tanaka ◽  
Hideki Morishita ◽  
Jeong Tak Ryu ◽  
Itsuo Katayama ◽  
Kenjiro Oura

1987 ◽  
Vol 103 ◽  
Author(s):  
R. W. Vook

ABSTRACTA review of the experimental and theoretical results describing thin film growth modes is presented. Thermodynamic criteria for determining which growth mode might be expected to occur in a particular case along with some kinetic considerations are given. The characteristics of each of the three principal growth modes, namely Frank and van der Merwe (layer), Stranski-Krastanov (layer plus island), and Volmer-Weber (island), are discussed. Lastly, the requirements favoring the growth of epitaxial multilayers are briefly considered.


2015 ◽  
Vol 7 (2) ◽  
pp. 1823-1828
Author(s):  
Asim Aijaz ◽  
Zaheer Uddin

Hydrogenated amorphous carbon (a-C:H) thin film growth using plasma-assisted deposition is studied using Monte Carlo based simulation. The effect of energetic bombardment of the ionized depositing species as well as ionized buffer gas species on the film growth and the resulting film properties is investigated. The ion energies that assist the a-C:H film growth from low density structures to high density structures such as diamond-like carbon (DLC) are used and the effect of energy and composition of the depositing species on the C-C and C-H bonding and the film structure are analyzed. It is found that the ion bombardment favors the formation of a-C:H films with low H contents, high density and superior mechanical strength of the resulting thin films and is therefore an effective way to tailor-made a-C:H thin film growth for specific applications.


1999 ◽  
Vol 14 (5) ◽  
pp. 2162-2172 ◽  
Author(s):  
M. Brinkmann ◽  
S. Graff ◽  
C. Chaumont ◽  
J-J. André

A new thin film synthesis route based on the electrochemical oxidation of PcLi2 and deposition of lithium phthalocyanine (PcLi) onto indium tin oxide (ITO) substrate is demonstrated. The effects on the thin film morphology of various parameters such as the electrolysis time, the nature of the solvent, and the oxidation potential are investigated. The thin film growth is studied via x-ray diffraction, potential step experiments, and ex situ scanning electron microscopy. Various morphologies of the x-form thin films are observed for different electrolysis times and solvents. Thin films grown in acetonitrile of thickness above 1 μm consist in unidirectionally oriented needle-shaped crystallites.


1997 ◽  
Vol 11 (21n22) ◽  
pp. 981-987
Author(s):  
H. Q. Yin ◽  
T. Arakawa ◽  
Y. Kaneda ◽  
T. Yoshikawa ◽  
N. Haneji ◽  
...  

La 2-x Sr x CuO 4 ultra-thin films with thickness 200 Å were fabricated by pulsed laser deposition method in oxygen ( O 2) atmosphere. The morphology of deposited films was investigated by reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM) and scanning electronic microscopy (SEM). The strong oxygen ambient pressure dependence of film morphology was observed. In high oxygen ambient pressure, the film growth is dominated by island growth mode. The results imply that the experimental conditions of oxygen ambient pressure and substrate temperature are critical for the layer-by-layer growth mode.


1998 ◽  
Vol 526 ◽  
Author(s):  
R. Hourlet ◽  
R. Vacassy ◽  
H. Hofmann ◽  
W. Vogel

AbstractA laser spark atomizer (LINA-SPARK™), LSA, has been used for preparing powder particles from SnO2, Al2O3 and ZrO2 ceramic specimen. It is shown that this technique can be used for preparing thin films by direct deposition on a substrate. The as-prepared powder can also be redispersed and deposited using ultrasonic nebulization (Pyrosol) deposition. The latter approach is especially suited for deposition of controlled-size and multicomponent thin films.The coupling of the LSA to an induced coupled plasma (ICP) emission spectrometer is also discussed and compared with laser ablation. Generally powder particles produced from LSA present a narrower size distribution as powders prepared by laser ablation. As a result, the quantitative elemental analysis of solids are improved with full benefit of the sensitivity and detection limits of the ICP are lowered.


Sign in / Sign up

Export Citation Format

Share Document