Fabrication of a β-TCP Nanomaterial and its Inhibitory Effects on Human Ovarian Cancer SKOV-3 Cells

2010 ◽  
Vol 129-131 ◽  
pp. 1029-1033
Author(s):  
Xiang Dong Ma ◽  
Xiao Ming Wu ◽  
Hai Xia Duan ◽  
Xing Ma ◽  
Tao Fu

Nanosized β-tricalcium phosphate (TCP) material was produced in this study using a wet precipitation method and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Human ovarian sarcoma SKOV-3 cells were cultured and the influence of nanoscale β-TCP particles on SKOV-3 cell behavior was studied in vitro. As a result, β-TCP nanoparticles with average size of 100 nm were obtained. Cell growth of SKOV-3 cells was noticeably declined in the presence of β-TCP nanoparticles (200ng/ml). The distribution of cell cycle for SKOV-3 cells cultured with and without β-TCP nanomaterials was quite different. In G1 phase of cell cycle, the percentage of SKOV-3 cells cultured in the absence of β-TCP nanoparticles was significantly lower than that cultured in the presence of β-TCP nanoparticles (p<0.01). In S phase of cell cycle, on the other hand, the percentage of SKOV-3 cells cultured without β-TCP nanoparticles was noticeably increased compared with that cultured with β-TCP nanoparticles (p<0.01). Moreover, the expression of proliferating cell nuclear antigen (PCNA) in SKOV-3 cells cultured in medium containing 200ng/ml β-TCP nanopaticles was significantly lower than that in the cells cultured without β-TCP nanoparticles (p<0.01). In conclusion, the nanoscale β-TCP material synthesized in this study can exert anti-tumor effects on SKOV-3 cells through mechanisms of cell growth inhibition, downregulation of PCNA expression and cell cycle arrest at G1 phase.

2006 ◽  
Vol 232 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Ting-He Wu ◽  
Ruo-Lin Yang ◽  
Li-Ping Xie ◽  
Hong-Zhong Wang ◽  
Lei Chen ◽  
...  

2003 ◽  
Vol 23 (24) ◽  
pp. 9375-9388 ◽  
Author(s):  
Melanie J. McConnell ◽  
Nathalie Chevallier ◽  
Windy Berkofsky-Fessler ◽  
Jena M. Giltnane ◽  
Rupal B. Malani ◽  
...  

ABSTRACT The transcriptional repressor PLZF was identified by its translocation with retinoic acid receptor alpha in t(11;17) acute promyelocytic leukemia (APL). Ectopic expression of PLZF leads to cell cycle arrest and growth suppression, while disruption of normal PLZF function is implicated in the development of APL. To clarify the function of PLZF in cell growth and survival, we used an inducible PLZF cell line in a microarray analysis to identify the target genes repressed by PLZF. One prominent gene identified was c-myc. The array analysis demonstrated that repression of c-myc by PLZF led to a reduction in c-myc-activated transcripts and an increase in c-myc-repressed transcripts. Regulation of c-myc by PLZF was shown to be both direct and reversible. An interaction between PLZF and the c-myc promoter could be detected both in vitro and in vivo. PLZF repressed the wild-type c-myc promoter in a reporter assay, dependent on the integrity of the binding site identified in vitro. PLZF binding in vivo was coincident with a decrease in RNA polymerase occupation of the c-myc promoter, indicating that repression occurred via a reduction in the initiation of transcription. Finally, expression of c-myc reversed the cell cycle arrest induced by PLZF. These data suggest that PLZF expression maintains a cell in a quiescent state by repressing c-myc expression and preventing cell cycle progression. Loss of this repression through the translocation that occurs in t(11;17) would have serious consequences for cell growth control.


2009 ◽  
Vol 16 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Cheng-ming Sun ◽  
Shi-feng Huang ◽  
Jian-ming Zeng ◽  
Din-bing Liu ◽  
Qing Xiao ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3145-3145
Author(s):  
Narjis Rizwan ◽  
Yandong Shen ◽  
Edwin Iwanowicz ◽  
Stephen P. Mulligan ◽  
Kyle R Crassini ◽  
...  

Abstract Introduction Despite the revolution in the treatment of chronic lymphocytic leukemia (CLL) over the past decade with the introduction of novel inhibitors targeting the B-cell receptor (BCR) signaling pathway and the Bcl-2 family of proteins, relapse is still common. Recent studies suggest that imipridones, a novel class of small molecule agents that attenuate mitochondrial respiration and modulate an immune response against cancer cells, may be an effective treatment option for several difficult to treat cancers. We investigated the effects of the imipridone, ONC-212 (I-39, first published by Nanjing Gator Meditech), as a potential therapeutic strategy for CLL using the OSU-CLL cell line and a modified OSU-CLL line in which TP53 was stably knocked out and primary CLL cells cultured under conditions that mimic the tumour microenvironment (TME). Methodology Primary CLL cells were co-cultured with CD40L-expressing fibroblasts to mimic aspects of the TME. The cytotoxicity of ONC-212 was assessed using the mitochondrial dye DiIC1(5), propidium iodide and flow cytometry. The effects of the drug on the adhesive and migratory capacity of primary CLL cells were evaluated using antibodies against CD49d, CXCR4 and an in vitro migration assay using stroma-derived factor 1a (SDF1-α). Changes in protein expression were assessed by immuno-blotting. The effects of ONC-212 on the cell cycle and proliferation were assessed using the OSU-CLL cell line. OSU-CLL cells were modified using the CRISPr-Cas9 technology to be TP53 deficient (OSU-TP53ko). The proportion of cells in each cycle phase was determined using propidium iodide and flow cytometry. Cell proliferation rates were determined using carboxyfluorescein succinimidyl ester (CFSE) and flow cytometry. Results ONC-212 induced apoptosis in a dose-dependent manner in primary CLL cells cultured in medium alone or in contact with CD40L-fibroblasts (Figure 1); the IC50 values were 72.97 nm +/- 1.45 nM and 472 +/- 2.04 nM, respectively. OSU-CLL and OSU-TP53ko cells were also sensitive to ONC-212, although the TP53 deficient line was less sensitive than OSU-CLL(Figure 1). IC50 values for the cell lines were 22 +/- 1.37 nM (OSU-CLL) and 48 +/- 3.25 nM (OSU-TP53ko). ONC-212 induced cell cycle arrest of the OSU-CLL and OSU-TP53ko lines at the G1/S phase transition. This effect was concomitant with a significant reduction in the proliferation of both lines. ONC-212 significantly down-regulated expression of the adhesion molecule CD49d and the G-coupled protein receptor CXCR4 on primary CLL cells. Down-regulation of CXCR4 translated into a decrease in the migratory capacity of CLL cells along an SDF1-α gradient. Immunoblotting suggested the mechanisms of action of ONC-212 include inhibition of ERK1/2-MAPK, a decrease in the Bcl-2/Bax ratio and upregulation of the pro-apoptotic Puma and Bak proteins. Conclusions ONC-212 is highly effective against CLL cells at nanomolar concentrations, against cells cultured under conditions that mimic aspects of the TME and against TP53-deficient cells. ONC-212 has cytotoxic effects, induces cell cycle arrest, slows proliferation and inhibits the mechanisms by which CLL cells migrate to and are retained within the TME. ONC-212 inhibited signaling downstream of the BCR and induced a pro-apoptotic 'tipping' of the balance in expression of BCl-2 family proteins. These data suggest ONC-212 may represent an effective treatment for CLL, particularly for patients who have high risk, relapsed/refractory disease associated with loss or mutation of TP53. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2474-2474
Author(s):  
Piotr Smolewski ◽  
Agnieszka Janus ◽  
Barbara Cebula ◽  
Anna Linke ◽  
Krzysztof Jamroziak ◽  
...  

Abstract Background: Rapamycin (RAPA) is an inhibitor of mTOR kinase pathway. In vitro low doses of this agent induce cell cycle arrest in G1 phase, whereas higher concentrations of RAPA exert proapoptotic effects. Aim: We assessed cytotoxicity of RAPA alone or in combination with cytarabine (cytosine arabinoside, ARA-C) in acute myeloblastic leukemia (AML) cells and in normal lymphocytes obtained from 10 healthy volunteers. Methods: AML cells (in vitro HL-60 cell line and ex vivo leukemic cells) and phytohemaglutynin (PHA)-stimulated normal lymphocytes were treated for 24 – 48 h with 1 ng/ml RAPA alone or in combination with 50 nM cytarabine (Ara-C). Moreover, cells was pre-incubated with RAPA for 24 h and then Ara-C was added for the next 24 h. Untreated cultures and those treated with RAPA, Ara-C or PHA alone served as respective controls. The proapoptotic effect was assessed by Annexin V assay and presented as a percentage of Annexin-V-positive cells (apoptotic index; AI). Cell cycle was analyzed by DNA distribution in propydium iodide/RN-ase stained cells. Cyclin D3, A and E expression was also measured using flow cytometry. Results: Median AI induced in HL-60 cells after 24 h treatment with RAPA+Ara-C (30.1%) was significantly higher than induced by RAPA (7.2%) or Ara-C (18.5%) alone (p=0.002 and p=0.03, respectively). The RAPA+Ara-C combination exerted additive effect (combination index 0.87) in that model. Additional 24 hour pretreatment with RAPA further increased apoptosis (median AI 41.5%, vs. 10.9% after 48 h-RAPA alone). In contrast to leukemic cells, pretreatment of normal PHA-stimulated lymphocytes with RAPA caused their G1 phase cell cycle arrest, with significant decrease in cyclin D3 expression (vs. untreated cells - p&lt;0.001). This resulted in prevention of Ara-C-induced cytotoxicity in healthy lymphocytes, when Ara-C was added for another 24 h. Importantly, that protective effect was reversible when RAPA-treated lymphocytes were rinsed and then cultured in fresh, RAPA-free medium for the next 24 h. In another set of experiments, cells from 12 de novo AML patients were treated with RAPA and Ara-C in above concentrations and time settings. RAPA and Ara-C were administrated to isolated peripheral blood mononuclear cells (PBMC). PBMC were immunophenotyped before and after treatment. Leukemic blasts were marked for individually chosen antigen, most characteristic for leukemic clone in particular patient. Normal CD3+ lymphocytes were also detected. Finally, Annexin V staining was performed. Based on that simultaneous three-color staining the proapoptotic effects of treatment could be measured by flow cytometry in both leukemic blasts and normal CD3+ cells. Thus, we found that pretreatment with RAPA protected majority of CD3+ cells (median of alive cells 85.5%) from Ara-C-induced apoptosis, whereas the leukemic blasts AI was higher than in samples treated with Ara-C. After Ara-C alone CD3+ rate decreased significantly (median 35.1%). Conclusions: Pretreatment with RAPA enhances cytotoxic effect of Ara-C on leukemic cells, but not on healthy lymphocytes. The phenomenon is probably due to reversible arrest of healthy cells in G1 phase of cell cycle by low doses of RAPA, what causes their transient resistance to proapoptotic action of cytostatic drugs. In contrast, the same RAPA doses selectively sensitizes leukemic cells to cytostatics. This suggests, that inhibition of mTOR kinase prior to cytostatics administration may result in selective anti-tumor treatment, with protection of normal cells.


Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 681
Author(s):  
Liang-Tsai Yeh ◽  
Li-Sung Hsu ◽  
Yi-Hsuan Chung ◽  
Chih-Jung Chen

Background and objectives: Glioblastoma is one of the leading cancer-related causes of death of the brain region and has an average 5-year survival rate of less than 5%. The aim of this study was to investigate the effectiveness of tectorigenin, a naturally occurring flavonoid compound with anti-inflammatory, anti-oxidant, and anti-tumor properties, as a treatment for glioblastoma. A further goal was to use in vitro models to determine the underlying molecular mechanisms. Materials and Methods: Exposure to tectorigenin for 24 h dose-dependently reduced the viability of glioblastoma cells. Results: Significant cell cycle arrest at G0/G1 phase occurred in the presence of 200 and 300 µM tectorigenin. Treatment with tectorigenin clearly reduced the levels of phosphorylated retinoblastoma protein (p-RB) and decreased the expression of cyclin-dependent protein 4 (CDK4). Tectorigenin treatment also significantly enhanced the expression of p21, a CDK4 inhibitor. Conclusions: Collectively, our findings indicated that tectorigenin inhibited the proliferation of glioblastoma cells by cell cycle arrest at the G0/G1 phase.


Sign in / Sign up

Export Citation Format

Share Document