The Relationship between the Distribution Characteristics of Cutting Speed at the Contact-Point and the Surface Quality of Gear Teeth

2010 ◽  
Vol 135 ◽  
pp. 128-133 ◽  
Author(s):  
Guo Xing Liang ◽  
Ming Lv ◽  
Xiao Xu Gao

In the paper, the vector expression of cutting speed on the contact-points has been obtained by the coordinate transformation. The cutting speed is the contact-point position function which is correlated with contact-line in the process of honing gear. It is diverse along the direction of the tooth depth, so the surface texture of workpiece gear has a visible difference from the top to the root of the tooth. It is showed in the results that the surface roughness value of same tooth has further increscent differences with the increasing honing speed, and the surface of tooth is in the same quality.

2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4046
Author(s):  
Mateusz Bronis ◽  
Edward Miko ◽  
Lukasz Nowakowski

This article discusses the relationship between the kinematic system used in drilling and the quality of through-holes. The drilling was done on a CTX Alpha 500 universal turning center using a TiAlN-coated 6.0 mm drill bit with internal cooling, mounted in a driven tool holder. The holes were cut in cylindrical 42CrMo4 + QT steel samples measuring 30 mm in diameter and 30 mm in length. Three types of hole-drilling kinematic systems were considered. The first consisted of a fixed workpiece and a tool performing rotary (primary) and linear motions. In the second system, the workpiece rotated (primary motion) while the tool moved linearly. In the third system, the workpiece and the tool rotated in opposite directions; the tool also moved linearly. The analysis was carried out for four output parameters characterizing the hole quality (i.e., cylindricity, straightness, roundness, and diameter errors). The experiment was designed using the Taguchi approach (orthogonal array). ANOVA multi-factor statistical analysis was used to determine the influence of the input parameters (cutting speed, feed per revolution and type of kinematic system) on the geometrical and dimensional errors of the hole. From the analysis, it is evident that the kinematic system had a significant effect on the hole roundness error.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 460
Author(s):  
Canbin Zhang ◽  
Chifai Cheung ◽  
Benjamin Bulla ◽  
Chenyang Zhao

Ultrasonic vibration-assisted cutting (UVAC) has been regarded as a promising technology to machine difficult-to-machine materials such as tungsten carbide, optical glass, and hardened steel in order to achieve superfinished surfaces. To increase vibration stability to achieve optical surface quality of a workpiece, a high-frequency ultrasonic vibration-assisted cutting system with a vibration frequency of about 104 kHz is used to machine spherical optical steel moulds. A series of experiments are conducted to investigate the effect of machining parameters on the surface roughness of the workpiece including nominal cutting speed, feed rate, tool nose radius, vibration amplitude, and cutting geometry. This research takes into account the effects of the constantly changing contact point on the tool edge with the workpiece induced by the cutting geometry when machining a spherical steel mould. The surface morphology and surface roughness at different regions on the machined mould, with slope degrees (SDs) of 0°, 5°, 10°, and 15°, were measured and analysed. The experimental results show that the arithmetic roughness Sa of the workpiece increases gradually with increasing slope degree. By using optimised cutting parameters, a constant surface roughness Sa of 3 nm to 4 nm at different slope degrees was achieved by the applied high-frequency UVAC technique. This study provides guidance for ultra-precision machining of steel moulds with great variation in slope degree in the pursuit of optical quality on the whole surface.


2014 ◽  
Vol 902 ◽  
pp. 95-100 ◽  
Author(s):  
Heraldo J. Amorim ◽  
Augusto O. Kunrath Neto

The aim of this work is to analyze the tool wear effects on surface finish of machined components. Long-term machinability tests were performed for ASTM 1040 and 1045 carbon steels with carbide tools, in which tool wear and surface roughness were periodically evaluated. Surface finish was analyzed as a function of processed material and cutting speed with new machining tool, and a significant influence was found for cutting speed at a confidence interval of 10%. When evaluated as a function of time and tool wear, surface roughness showed an exponential relationship with both variables. However, a high dispersion occurs close to the end of tool life, especially for AISI 1040 steel. Weak influence of cutting speed (for the range of speeds tested) was observed on the relationship between tool wear and surface finish, indicating that a single equation can describe its behavior for all studied conditions. The relationship between the surface roughness and the cutting time was found to be stronger for the ABNT 1040 steel.


2012 ◽  
Vol 217-219 ◽  
pp. 1912-1916
Author(s):  
Ji Hua Wu

Surface roughness plays a critical role in evaluating and measuring the surface quality of a machined product. Two workpiece materials have been investigated by experimental approach in order to gain a better understanding of their influence on the obtained surface roughness in the micro-milling processes. The experimental results show that: surface topography is completely different for different materials at the same cutting speed and feed rate; surface roughness increases with an increase of material grain size. Surface roughness decreases to a lowest value, and then increases with an increase of the feed rate. A new surface model to illustrate the influence of material and uncut chip thickness was developed. The model has been experimentally validated and shows more promising results than Weule’s model.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 572-580 ◽  
Author(s):  
Rong Yin ◽  
Xiao-Ming Tao ◽  
Bin-gang Xu

This paper experimentally studies the relationship between the friction surface of a false-twisting unit and the quality of cotton yarns produced by a modified ring spinning system, with the adoption of the single friction-belt false-twister. The friction surface of the false-twisting unit, as a key twisting component, has been studied in terms of material, surface roughness, hardness and diameter, as well as the interaction between these factors and resultant yarn properties, with particular attention to yarn imperfections. Experimental results showed that the false-twisting unit with a short interactive path demonstrated significant reduction of yarn imperfections, especially yarn neps. With the optimal false-twisting unit, performances of the modified yarns and their knitted fabrics were evaluated and compared with the conventional ones.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401983631 ◽  
Author(s):  
István Gábor Gyurika ◽  
Tibor Szalay

Automated stone manufacturing has undergone considerable development in recent years. Thanks to international research dealing with the cutting, sawing and grinding of different natural stones, processing time shortens and tool-life lengthens. However, the process of stone milling has not been extensively examined yet, primarily because of the novelty of this technology. The aim of the research described in this article is to examine how variable cutting speed affects the quality of workpiece edges while milling granite materials. For the research, sample surfaces were formed on five granite slabs with different average grain sizes using five cutting speed values. Afterwards, changes in the average surface roughness and average edge chipping rate were examined. From the research results, it can be concluded that, due to an increase in cutting speed, the average edge chipping rate will decrease until reaching a borderline speed. In the case of a higher cutting speed, the referent tendency cannot be ascertained. A statistical analysis conducted in the scope of this research showed that if a variable cutting speed is applied, then changes in the quality of the sample surface edge can be inferred from the development trends of average surface roughness.


1994 ◽  
Vol 116 (3) ◽  
pp. 387-391 ◽  
Author(s):  
D. C. Xiao ◽  
C. Lee

This article introduces a method to calculate contours of form cutters for machining helical gears from given gear tooth profiles. It is essential to find a relationship between the cutter contour and the gear profile in order to carry out the calculation. The method introduced in this article uses contact points between the cutter rotary surface and the gear tooth surface to establish the relationship. A minimum distance principle is applied. Equations for the calculation are derived and an example is given.


2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


Sign in / Sign up

Export Citation Format

Share Document