Data Integration of CAD, CAE with CAM for Composite Structures

2010 ◽  
Vol 139-141 ◽  
pp. 1294-1298
Author(s):  
Li Hua Zhang

Digital composite structures definition is the basis for the data integration of CAD, CAE and CAM for composite structures. The key of digital composite structures definition is the modeling of material structures. In this paper the procedure of material structures modeling and contents of laminate lay-up definition data have been summarized briefly. Today composite structures can not be analyzed with true fiber orientations. True fiber orientations of discrete triangle elements have been used to approximate the final state of ply fibers and a XML file has been used to describe laminate lay-up definition data. Furthermore, automatic mapping of fiber orientation data to the finite element mesh based on user specified tolerances has been used to obtain the automatic data transfer from CAD software to CAE software. Finally, the data integration of the CAD software with two manufacturing systems has been presented.

2005 ◽  
Vol 11 (3) ◽  
pp. 203-209
Author(s):  
Erich Raue ◽  
Thorsten Heidolf

Composite structures consisting of precast and cast in‐situ concrete elements are increasingly common. These combinations demand a mechanical model which takes into account the time‐dependent behaviour and analysis of the different ages of the connected concrete components. The effect of creep and shrinkage of the different concrete components can be of relevance for the state of serviceability, as well as for the final state. The long‐time behaviour of concrete can be described by the rate‐of‐creep method, combined with a discretisation of time. The internal forces are described for each time interval using a system of linear differential equations, which can be solved by Laplace‐transform.


2020 ◽  
pp. 002199832096255
Author(s):  
Jennifer M Sietins ◽  
Jessica C Sun ◽  
Daniel B Knorr Jr

It is well known that the mechanical performance of composite materials is highly dependent on the fiber orientation. Several techniques have historically been used to quantify fiber orientation experimentally. Newer methods have involved 3 D X-ray computed tomography (CT) scans due to the high resolution that is now achievable within a laboratory setting. The accuracy of the analysis, however, is a function of the resulting scan image quality and the specific parameters influencing the resulting orientation analysis. This report summarizes a methodology to quantify fiber orientation from 3 D CT scans. Optimal scanning parameters are presented taking into account both the necessary resolution, geometric unsharpness, and the scan volume size. The influence of varied software analysis parameters and their effects on the resulting orientation data is discussed. The selection of software analysis parameters was independently validated with optical microscopy on a sample with only two fibers. Lastly, the orientation analysis was applied to a 0/+45/−45/90 composite to demonstrate this technique on a larger scale.


2015 ◽  
Vol 11 (3) ◽  
pp. 370-396 ◽  
Author(s):  
Tuan-Dat Trinh ◽  
Peter Wetz ◽  
Ba-Lam Do ◽  
Elmar Kiesling ◽  
A Min Tjoa

Purpose – This paper aims to present a collaborative mashup platform for dynamic integration of heterogeneous data sources. The platform encourages sharing and connects data publishers, integrators, developers and end users. Design/methodology/approach – This approach is based on a visual programming paradigm and follows three fundamental principles: openness, connectedness and reusability. The platform is based on semantic Web technologies and the concept of linked widgets, i.e. semantic modules that allow users to access, integrate and visualize data in a creative and collaborative manner. Findings – The platform can effectively tackle data integration challenges by allowing users to explore relevant data sources for different contexts, tackling the data heterogeneity problem and facilitating automatic data integration, easing data integration via simple operations and fostering reusability of data processing tasks. Research limitations/implications – This research has focused exclusively on conceptual and technical aspects so far; a comprehensive user study, extensive performance and scalability testing is left for future work. Originality/value – A key contribution of this paper is the concept of distributed mashups. These ad hoc data integration applications allow users to perform data processing tasks in a collaborative and distributed manner simultaneously on multiple devices. This approach requires no server infrastructure to upload data, but rather allows each user to keep control over their data and expose only relevant subsets. Distributed mashups can run persistently in the background and are hence ideal for real-time data monitoring or data streaming use cases. Furthermore, we introduce automatic mashup composition as an innovative approach based on an explicit semantic widget model.


2009 ◽  
Vol 65 ◽  
pp. 89-96 ◽  
Author(s):  
Mauricio Torres ◽  
Jorge Luis Gonzalez ◽  
Hilario Hernandez

Aircraft composite structures are mostly joined by mechanical fasteners like bolts, pins or screws. However, the effect of the presence of holes in the remaining strength of the composite structures is still being studied extensively. In this work, epoxy/glass laminates with drilled holes of different sizes were tensile tested and from these results, the residual strength was plotted. Strength vs. hole’s diameter at different fiber orientation was obtained. The fracture path and failure mechanism were identified by fractographic examination. The Point Stress Criterion (PSC) was used, in order to establish the stress intensification due to the presence of a drilled hole. A numerical model by Finite Element Method was carried out to verify the experimental results and the analytic failure predictions. A reduction of 50% in laminate strength was observed when diameter-width ratio was 0.12. The principal fracture mechanism observed in composite laminates was interface breakup. FEM results and analytic results by PSC show accuracy of 90% for predicting the damage in drilled composites.


2015 ◽  
Vol 760 ◽  
pp. 323-328
Author(s):  
Stefan Cotae ◽  
Constantin Popescu ◽  
Horatiu Iancau

In this paper it has been sought to highlight the mechanical behavior of composite structures at low temperatures compared to mechanical behavior at room temperature. For researches an experimental program has been conceived and built using factorial method. In this method, as dependent variable was taken the tensile strength (σr), while as independent variables were taken: the fiber orientation angles (θ), the degree of reinforcement (Mf) of the composite structure and the temperature (t) at which the tests were carried out (+25°C,-25°C and-50°C respectively). It has been used a complex experimental installation, specific to tests at low temperatures.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7626
Author(s):  
Chan-Jung Kim

The prediction of system parameters is important for understanding the dynamic behavior of composite structures or selecting the configuration of laminated carbon in carbon-based composite (CBC) structures. The dynamic nature of CBC structures allows the representation of system parameters as modal parameters in the frequency domain, where all modal parameters depend on the carbon fiber orientations. In this study, the variation in the system parameters of a carbon fiber was derived from equivalent modal parameters, and the system parameters at a certain carbon fiber orientation were predicted using the modal information at the reference carbon fiber orientation only and a representative curve-fitted function. The target CBC structure was selected as a simple rectangular structure with five different carbon fiber orientations, and the modal parameters were formulated based on a previous study for all modes. Second-order curve-fitted polynomial functions were derived for all possible cases, and representative curve-fitting functions were derived by averaging the polynomial coefficients. The two system parameters were successfully predicted using the representative curve-fitting function and the modal information at only the reference carbon fiber orientation, and the feasibility of parameter prediction was discussed based on an analysis of the error between the measured and predicted parameters.


2021 ◽  
Vol 251 ◽  
pp. 03035
Author(s):  
Matti J. Kortelainen ◽  
Martin Kwok ◽  

The management of separate memory spaces of CPUs and GPUs brings an additional burden to the development of software for GPUs. To help with this, CUDA unified memory provides a single address space that can be accessed from both CPU and GPU. The automatic data transfer mechanism is based on page faults generated by the memory accesses. This mechanism has a performance cost, that can be with explicit memory prefetch requests. Various hints on the inteded usage of the memory regions can also be given to further improve the performance. The overall effect of unified memory compared to an explicit memory management can depend heavily on the application. In this paper we evaluate the performance impact of CUDA unified memory using the heterogeneous pixel reconstruction code from the CMS experiment as a realistic use case of a GPU-targeting HEP reconstruction software. We also compare the programming model using CUDA unified memory to the explicit management of separate CPU and GPU memory spaces.


Sign in / Sign up

Export Citation Format

Share Document