Harmonic Response Analyses of Three Knife-Shape-Tooth Star-Wheel Loading Mechanism

2010 ◽  
Vol 139-141 ◽  
pp. 2322-2325 ◽  
Author(s):  
Xiao Huo Li ◽  
Yong Dong Sha ◽  
Ji Quan Yao ◽  
Chun Hua Liu

In order to research dynamic natures of a three knife-shape-tooth star-wheel loading mechanism, a mechanical model and a solid model of the star-wheel loading mechanism are established by means of updated-Lagrange and ANSYS software in the paper, equivalent stress clouds and displacement responding curves of the star-wheel at different excitation frequencies are obtained through harmonic response analyses. Model analysis shown that the star-wheel loading mechanism doesn’t take place resonance when the excitation frequency locates between 1.8 and 2.4 Hz, and the star-wheel works stability when the rotation speed is from 36 r/min to 48 r/min. These conclusions from study lay a theoretical foundation for improving the design of a three knife-shape-tooth star-wheel loading mechanism and make better its dynamic behavior.

2013 ◽  
Vol 303-306 ◽  
pp. 2724-2726
Author(s):  
Xue Qiang Liu ◽  
Jian Chun Zhang ◽  
Hao Zhang ◽  
Xin Hu

The distribution of maximum equivalent stress on hemp stalks at different roller speeds were scavenged by LS-PREPOST function. The stress and strain distributions of hemp stalk under the transversely even-distributed load are analyzed through ANSYS software. The results show that hemp decortication largely depended on the rotation speed of separation roller and the feeding rate. In addition, the failure degree of bast fiber, the maturity and the water content of the stalk, and the difference in mechanical properties and geometrical size should be also taken into account.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Christopher G. Cooley ◽  
Tan Chai

This study investigates the vibration of and power harvested by typical electromagnetic and piezoelectric vibration energy harvesters when applied to vibrating host systems that rotate at constant speed. The governing equations for these electromechanically coupled devices are derived using Newtonian mechanics and Kirchhoff's voltage law. The natural frequency for these devices is speed-dependent due to the centripetal acceleration from their constant rotation. Resonance diagrams are used to identify excitation frequencies and speeds where these energy harvesters have large amplitude vibration and power harvested. Closed-form solutions are derived for the steady-state response and power harvested. These devices have multifrequency dynamic response due to the combined vibration and rotation of the host system. Multiple resonances are possible. The average power harvested over one oscillation cycle is calculated for a wide range of operating conditions. Electromagnetic devices have a local maximum in average harvested power that occurs near a specific excitation frequency and rotation speed. Piezoelectric devices, depending on their mechanical damping, can have two local maxima of average power harvested. Although these maxima are sensitive to small changes in the excitation frequency, they are much less sensitive to small changes in rotation speed.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhong Tang ◽  
Haotian Zhang ◽  
Yuepeng Zhou

Unbalanced vibration of tangential threshing cylinder increased the grain loss, shortened service life of the cylinder, and resulted in structural resonance during the rice threshing process. In this paper, the vibration amplitude and frequency of tangential threshing cylinder shaft were tested, and the vibration state of tangential threshing cylinder was identified. The restricted and working modalities of tangential threshing cylinder were solved by ANSYS software. Then, by comparing the resonance phenomenon between the inherent constraint frequency and the rotation speed frequency, the shaft vibration under the idle condition of tangential threshing cylinder was tested and analyzed. According to the axial vibration and axial trajectory of the cylinder, the inherent properties and characteristics of unbalanced vibration were revealed. Test results showed that when the tangential threshing cylinder was at idling and no-load state, the amplitude of vibration in the feed direction of straw flow was -0.049~0.060 mm, and the average vibration amplitude was 0.013 mm. As rice flowed along the tangential threshing cylinder, the vibration amplitude slightly increased. The trend and phase of each trajectory were similar, although the amplitude of each trajectory was different. The tangential threshing cylinder axis trajectory was flat oval. Unbalanced vibration was induced by the rice stalks in the concave gap.


2018 ◽  
Vol 204 ◽  
pp. 07020
Author(s):  
Didin Mujahidin ◽  
Poppy Puspitasari ◽  
Djoko Kustono

Bone implants are a tool used as a support of body parts, and bone support in cases of fractures. Scaffold, plate, bone screw, and some other tools can be used in combination to support and fill the connection between broken bones before the tissue grows. The most commonly used implant materials are Titanium, Stainless steel and ceramics, which are very common in the use of medical devices. Biocompatible materials are taken into consideration when planning a medical device. This research intended to know the durability of duralumin material as the latest implant material, as the development and breakthrough in health world. The research methodology used in this study was the optimization in Ansys software 18.1. The implants were designed, the material strength was determined and then given imposition with 6 variations (450 N, 550 N, 650 N, 750 N, 850 N and 950 N). The optimization was a method that identified mat erial strength including Equivalent Stress, Shear Stress and Total Deformation of duralumin material as implant materials with loading variations. Based on the results of the research, the duralumin material had a equivalent stress of 475,700 Pa which was higher than 950000 Pa for ZnO-Al2O3 implants, while the duralumin shear stress of 1084500 Pa was higher than 313720 Pa for ZnO-Al2O3 implants. When compared with titanium implants, the highest equivalent stress of 150000 Pa duralumin material had a higher compression stress than titanium. The highest shear stress of titanium 4358.1 Pa means an implant with a higher shear duralumin material of titanium. Whereas if it was compared to stainless steel with voltage press 564000000 Pa, then the duralumin’s pressure was getting lower. Material hardness affects resistance to wear and tear. Duralumin material hardness was lower than Titanium and ZnO-Al2O3, so total Duralumin deformation (elasticity) was higher than Titanium and ZnO-Al2O3.


2014 ◽  
Vol 915-916 ◽  
pp. 305-308
Author(s):  
Jing Wang ◽  
Yu Xing Wang ◽  
Yan Qin Tang ◽  
Dian Wu Zhang ◽  
Zhen Hua Xu ◽  
...  

By modeling of sugarcane leaf cutting off returning to field machinery chassis and loading, this paper simplifies reasonably several different conditions of the chassis to the two forms. The finite element is used for the solution of the problem by using ANSYS software, solving the node stress contour of the chassis. Compared the maximum stress in the most dangerous working conditions to the allowable stress of the material, the result verifies the chassis strength to meet the design requirements. According to the vibration of the chassis at work, analyzing the first sixth modal of the chassis, and comparing with excitation frequency shows that the design of the chassis avoids the excitation frequency, which does not cause resonance at work. The results show that the chassis meets the design requirements.


2014 ◽  
Vol 494-495 ◽  
pp. 706-710
Author(s):  
Bin Zhang ◽  
Yan Yun Luo ◽  
Zhi Nan Shi

This paper studies the experimental research on dynamic characteristics of the damping rubber in high elastic fastening by the electro-hydraulic servo movement tester. Based on a hypothesis superposition theory of nonlinear elastic restoring force and nonlinear damping force, a non-linear dynamic mechanical model is proposed. The dynamic stiffness and damping parameters of the rubber are obtained in different deformation conditions based on the dynamic mechanical model. The dynamic stiffness is analyzed, and the results show that dynamic stiffness is closely related to excitation frequency and amplitude. Furthermore the dynamic stiffness is analyzed under different free surface of rubber components by using FEM. That also reveals the changeable characteristics and affected factors of the damping rubber of the high elastic fastenings in large distortion condition.


2011 ◽  
Vol 291-294 ◽  
pp. 3139-3143
Author(s):  
Xing Cui ◽  
Xiao Ming Zhang ◽  
Guo Bin Chen ◽  
Yong Hui Li ◽  
Jun Liu

The MEMS gyroscope used in Spinning Projectiles is a single-chip and axis gyroscope drive by high-speed rotary of Spinning Projectiles. To analysis this theory, a corresponding mathematical module was established based on the structural principle of the gyroscope and the Kinetic parameters included in the mathematical module was analyzed and calculation. By calculation, the paper had drawn the curve between the displacement of mass and the input angular velocity. By using ANSYS software the vibration mode and harmonic response have been done, after comparing the results of imitation and calculation, it is found that the difference is little, so the theory based on the displacement of mass is correct.


Author(s):  
Katsuhide Fujita ◽  
Takashi Saito ◽  
Mitsugu Kaneko

When agricultural machines are operated on pavements, the vibration and noise caused by the interaction between the tire lugs and the road surface are inevitable. In conventional studies, it is considered that the dynamic behavior of a rolling agricultural tire is influenced by the vibration characteristics of the tire. Resonance occurs when the lug excitation frequency of the tire, which is defined as the lug number multiplied by the number of revolutions of the tire, becomes equal to the natural frequency of the tire. In other words, the rolling tire shows large vibrations in the direction of the natural mode corresponding to the natural frequency of the tire. However, in the conventional equipment, the diameter of the drum is smaller than that of the tire. Therefore, the real running condition on the road was not realized by the rolling test using the conventional equipment. In this study, a new equipment is produced to realize the running condition in the rolling test. The dynamic and vibratory characteristics of operating agricultural machine are investigated by using this new equipment. The obtained results are compared to the conventional ones and the influence of the running condition on dynamic characteristics of rolling tire is investigated.


Author(s):  
Katsuhide Fujita ◽  
Takashi Saito ◽  
Toru Yamazaki

When agricultural machines are operated on pavements, the vibration and noise caused by the interaction between the tire lugs and the road surface are inevitable. In conventional studies, it is considered that the dynamic behavior of a rolling agricultural tire is influenced by the vibration characteristics of the tire. Resonance occurs when the lug excitation frequency of the tire, which is defined as the lug number multiplied by the number of revolutions of the tire, becomes equal to the natural frequency of the tire. In other words, the rolling tire shows large vibrations in the direction of the natural mode corresponding to the natural frequency of the tire. However, the vibration mode of the rolling tire in resonance state has not yet been clarified. In this study, it is confirmed that the dynamic behavior of the rolling tire can be evaluated by performing sound pressure measurements using closely located microphones to the tire. Further, the vibration mode in the resonance state is identified by performing simultaneous measurements of the sound pressure, and the vibration mode corresponds to the natural mode of the tire is confirmed as well.


2012 ◽  
Vol 594-597 ◽  
pp. 2655-2658
Author(s):  
Zhen Dong Tan ◽  
Zun Feng Du ◽  
Jian Zhang ◽  
Chao He ◽  
Wei Guo Wu

One of the problems in installing cableway is the estimation of the tension. The mechanical model of coastal shore-to-ship transmission cableway was analyzed with catenary algorithm, compared with the finite element analysis of ANSYS software. The result shows that the tension and its changing amplitude are both gradually decreasing with the increase of the deflection. And, if the deflection is determined, the tension is decreasing with the increase of cableway’s span. These analysis results and conclusions can give the basis to safe installation of the cableway.


Sign in / Sign up

Export Citation Format

Share Document