Numerical Simulation in Rear Axlecap of Automobile Drawing Process and Optimization of Technological Parameters

2010 ◽  
Vol 148-149 ◽  
pp. 1171-1176
Author(s):  
Ju Hua Huang ◽  
Li Xian Li ◽  
Ying Ying Wan ◽  
Jun Tuan Guo

This paper takes the rear axle cap which is a typical automobile covering part as the research object. 3D and finite element model of it are built, and the drawing process is simulated with Dynaform, then the technological parameters are analyzed and optimized based on the simulation results, finally the part is compared with the one that is processed in practice. The results show that this method is easy and feasible, it not only increase the work efficiency greatly but also improve the quality of products.

2010 ◽  
Vol 20-23 ◽  
pp. 1405-1408 ◽  
Author(s):  
Wei Hua Kuang ◽  
Qun Liu

Drawing process is an important technology in shaping products. In the paper, the geometric surfaces of tools and sheet were modeled by Pro/E software, and a 3D finite element model of the cylindrical drawing process was developed by DYNAFORM. Numerical simulation results showed the distribution of stress, strain and thickness. FLD showed no material was in crack area and risk crack area. The drawing process could be successfully completed in one stroke. The simulation results were helpful for the die design.


2021 ◽  
Vol 11 (10) ◽  
pp. 4709
Author(s):  
Dacheng Huang ◽  
Jianrun Zhang

To explore the mechanical properties of the braided corrugated hose, the space curve parametric equation of the braided tube is deduced, specific to the structural features of the braided tube. On this basis, the equivalent braided tube model is proposed based on the same axial stiffness in order to improve the calculational efficiency. The geometric model and the Finite Element Model of the DN25 braided corrugated hose is established. The numerical simulation results are analyzed, and the distribution of the equivalent stress and frictional stress is discussed. The maximum equivalent stress of the braided corrugated hose occurs at the braided tube, with the value of 903MPa. The maximum equivalent stress of the bellows occurs at the area in contact with the braided tube, with the value of 314MPa. The maximum frictional stress between the bellows and the braided tube is 88.46MPa. The tensile experiment of the DN25 braided corrugated hose is performed. The simulation results are in good agreement with test data, with a maximum error of 9.4%, verifying the rationality of the model. The study is helpful to the research of the axial stiffness of the braided corrugated hose and provides the base for wear and life studies on the braided corrugated hose.


Author(s):  
Chuandong Chen ◽  
Jicai Liang ◽  
Yi Li ◽  
Ce Liang

In the flexible stretch bending of multi-point roller dies process, the deformation of workpiece is mainly driven by clamps. Therefore, the movement track of clamp has a great influence on the forming effect of workpiece. Y-profile, T-profile, and L-profile are taken as the research objects. Simulation and experiments are carried out with two different movement tracks. The influence of the movement tracks on shape error, springback error, and thickness variation of different profiles is discussed. The experimental results of the three profiles processed by the double-sided forming method are consistent with the simulation results, which proves the accuracy of the numerical simulation. The results show that the movement track has a great influence on shape error. Compared with double-sided forming, one-sided forming can effectively reduce springback error. The two different movement tracks have no obvious influence on thickness change.


2014 ◽  
Vol 722 ◽  
pp. 140-146
Author(s):  
Wen Juan Zhang ◽  
Long Wu ◽  
Gang Chen

In this paper the drawing process of Box-torque was simulated by Dynaform, which is FEM simulation software. The process parameters, which affected the quality of forming, were optimized by finite element simulation. The emphasis was focus on the optimization of draw-bead and BHF and data were summarized from the optimization graphs. In this simulation, lengthways draw-bead was set on the technical face for reducing or eliminating wrinkle. It was innovation difference from the usual that the draw-bead was set on binder. Finally the correctness of simulation was approved by comparing the optimization of simulation with the data of experimentation.


2014 ◽  
Vol 490-491 ◽  
pp. 644-648
Author(s):  
Lian Cheng Li ◽  
Ming Zhe Li ◽  
Yuan Ting Li

in this paper, we mainly introduce the principle of the flexible blank drawer forming (FBDF), and establish the limited element model of the FBDF process. Then we make a numerical analysis on the hemispherical parts, and study the effect made on the result of shaping by damping force, friction coefficient as well as material parameter in per unit area. Through the analysis of the numerical simulation result, we can conclude that the greater the yield limit and elasticity modulus, the larger blank drawer force is required to form the shape; the more smooth the material surface, the less resistance to deformation will have. All this contributes to good quality of forming parts.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 599 ◽  
Author(s):  
Fei Liu ◽  
Huixia Liu ◽  
Chenkun Jiang ◽  
Youjuan Ma ◽  
Xiao Wang

A novel high strain rate microforming technique, laser impact liquid flexible embossing (LILFE), which uses laser induced shock waves as an energy source, and liquid as a force transmission medium, is proposed by this paper in order to emboss three-dimensional large area micro arrays on metallic foils and to overcome some of the defects of laser direct shock microembossing technology. The influences of laser energy and workpiece thickness on the deformation characteristics of the pure copper foils with the LILFE process were investigated through experiments and numerical simulation. A finite element model was built to further understand the typical stages of deformation, and the results of the numerical simulation are consistent with those achieved from the experiments. The experimental and simulation results show that the forming accuracy and depth of the embossed parts increases with the increase in laser energy and decrease in workpiece thickness. The thickness thinning rate of the embossed parts increases with the decrease of the workpiece thickness, and the severest thickness thinning occurs at the bar corner region. The experimental results also show that the LILFE process can protect the workpiece surface from being ablated and damaged, and can ensure the surface quality of the formed parts. Besides, the numerical simulation studies reveal the plastic strain distribution of embossed microfeatures under different laser energy.


2013 ◽  
Vol 423-426 ◽  
pp. 972-977
Author(s):  
Lei Qin ◽  
Yan Ting Ma ◽  
Chang Jie Luo

In order to solve the problem of low accuracy of honeycomb semi-cell structures which are rolled by traditional trapezoidal tooth profile gear shaping rollers, conjugate trapezoidal tooth profile gear shaping rollers have been put forward to improve the quality of honeycomb semi-cell structures, basing on the theoretical analysis. Using ANSYS/LS-DYNA, a finite element model of rolling aluminum foils by two kinds of tooth profile shaping rollers was set up. Then results of numerical simulation indicate that the honeycomb semi-cell structures rolled by the conjugate trapezoidal gear shaping rollers are closer to the ideal size than those rolled by the traditional trapezoidal gear shaping rollers.


2013 ◽  
Vol 561 ◽  
pp. 390-394
Author(s):  
Hui Min Zhang ◽  
Jia Teng Niu ◽  
Lei Lei Dong

The rubber melt flow processes was studied through the numerical simulation methods. According to the two important factors of the melt temperature and mold temperature, the paper designs three plans, analyzed rubber melt flow front temperature, volume curing rate and volume curing rate at the end of filling in different melt temperature and mold temperature and found the best solution, so that curing time was shorten and production efficiency was improved under the precondition of filling smoothly mold and ensuring quality of products.


2011 ◽  
Vol 48-49 ◽  
pp. 964-970
Author(s):  
Cai Ling Xu ◽  
Fu Qiang Ying

In general, filling velocity of indirect squeeze casting mainly causes gas wrapping and slag inclusion, and it influences quality of casting parts directly. In this paper, filling velocity was researched on by Procast, moreover, models of casting parts and die were modeled. Furthermore, filling of a kind of panel was simulated, and the simulation results were analyzed. In conclusion, the best filling effect can be gotten, when the velocity v is equal to filling time t. As a result, it could offer better casting parameters for similar casting parts in squeeze casting.


2012 ◽  
Vol 562-564 ◽  
pp. 1373-1376
Author(s):  
Shi Min Xu ◽  
Hua Gui Huang ◽  
Deng Yue Sun

A new manufacturing method of spiral hot bending process for the end sheet of tubular pile was introduced in this paper. A three-dimensional (3-D) thermal-mechanical coupled elastic-plasticity finite element model was setup to simulate the hot bending process, and then, the section deformation mechanism from hot bar by rolling to the end sheet has been investigated from the simulation results. The industry manufacture conditions show that the efficiency and quality has been highly improved by the spiral hot bending process. The thickness variety along the radial direction of the workpiece has also been analyzed, the moment and force during the hot bending was also presented in this paper. These conclusions obtained can guide for the forming technology making for both the end sheet of tubular pile and other ring parts.


Sign in / Sign up

Export Citation Format

Share Document