Effect of Super Slag Powder on Pore Structure and Compressive Strength of RPC

2010 ◽  
Vol 150-151 ◽  
pp. 1214-1219
Author(s):  
Ping Zhang ◽  
Qiu Yi Li ◽  
Tie Jun Zhao ◽  
Xiang Xin Xue

This paper deals with RPC produced by superfine slag powder(measured specific surface area is 1824 m2/kg) and natural sands with a low water-binder ratio(0.2 or so),which strength can achieve 100MPa after 28d standand curing. An analysis,based on the mercury intrusion porosimetry,is made of the relationship between strength and pore structure parameters.The results show that the strength can be improved in the range of 30~45%, when the dosage of superfine slag powder varied from 5% to 15%;the linearity between compressive strength,water-binder ratio and the hole with a daimetre larger than 100nm are 0.72 and 0.92 respectively;and the RPC’s 28-day compressive strength produced by the natural sands, with a maximum grain size of 4.75 mm,is almost equal to the RPC produced by standard sands.

2012 ◽  
Vol 174-177 ◽  
pp. 117-120
Author(s):  
Ying Zhang ◽  
Jiang Dong Cai ◽  
Shan Lin Xu ◽  
Zhi Jun Hu

The influence of admixture on concrete pore structure was analyzed by using the mercury intrusion method and the rapid frozen-thaw method under the condition of the same water/binder ratio in this paper, and thus the relationship between pore structure and frost resistance of concrete were analyzed. When the compound mineral ad-mixture is mixed, the porosity rate of concrete can be decreased and the harmful hole is in-creased, the less-harm hole and the no-harmful hole are decreased. The early strength of concrete is not decreased. But the strength has the increasing trend in the late, which is more favorable for the impermeability and corrosion resistance. But the improvement of the freezing resistance is not obvious. The admixture of air entraining agent can increase the porosity and more-harmful hole, and the concrete strength will be decreased, which will be not favorable for the freezing resistance of concrete. If these two substances are admixed at the same time, the concrete porosity is increased, and the pore size distribution of concrete can be reasonable. The decrement of concrete strength is not obvious, but it is favorable for the freezing resistance of concrete.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4863
Author(s):  
Won Jung Cho ◽  
Min Jae Kim ◽  
Ji Seok Kim

Pore structure development in Portland cement, fly ash, or/and ferronickel slag (FNS) was investigated using mercury intrusion porosimetry and X-ray CT tomography. The progress of hydration was observed using X-ray diffraction (XRD) analysis and compressive strength while durability of concrete was monitored by chloride penetration resistance and chloride profiles. Mercury intrusion porosimetry (MIP) results suggested that the blended cement had a higher porosity while lower critical pore size. The major reason to this increased porosity was the formation of meso and micro pores compared to ordinary Portland cement (OPC). In terms of chloride transport, replaced cement, especially ternary-blended cement had higher resistance to chloride transport and exhibited slightly lower development of compressive strength. X-ray CT tomography shows that the influence of pore structure of ternary-blended cement on the ionic transport was strongly related to the pore connectivity of cement matrix.


2018 ◽  
Vol 276 ◽  
pp. 75-82 ◽  
Author(s):  
Tomáš Žižlavský ◽  
Martin Vyšvařil ◽  
Patrik Bayer ◽  
Pavla Rovnaníková

This paper studies the possibility of usage of chitosan derivatives (hydroxypropyl chitosan (HPCH) and carboxymethyl chitosan (CMCH)) as admixtures for aerial lime-based mortars. The physical-mechanical properties were studied on the specimens prepared with constant water/binder ratio and binder/aggregate ratio 1:3 by weight using siliceous sand with the grain size up to 4 mm and doses of admixture ranging between 0.5 and 10‰. The properties were studied on the specimens up to 365 days. The addition of admixtures improves workability of mortar, but in the early stages also decreases strengths of mortars, especially the compressive strength. The addition of HPCH significantly reduces the bulk densities of specimens, while CMCH decreases them just slightly. With the increasing amount of time, the difference in strengths between reference and tested mortars decreases, reaching the similar values after 90 days of curing time. The further ageing causes additional growth of strengths with a significantly higher increase in the case of CMCH.


2011 ◽  
Vol 250-253 ◽  
pp. 104-108 ◽  
Author(s):  
Yue Li ◽  
Jun Ling Bao ◽  
Chun E Sui ◽  
Xiu Li Du

This paper presents the effects of mineral admixtures and the water to binder ratio (W/B) on the tensile and compressive strength and micro pore structure of hardened cement pastes. The test results show that: with the water to binder ratio increasing, the tensile and compressive strength of cement paste with different mineral admixtures will decrease, air content and mean pore diameter will decrease and the cement paste with the ground blast furnace slag is the lowest. The artificial neural network based on its nonlinear mapping function can fit the relationship between strength and pore structure more accurate than an empirical formula.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 865
Author(s):  
Youmin Han ◽  
Junwu Xia ◽  
Linli Yu ◽  
Qiong Su ◽  
Xiaomiao Chen

To elucidate the relationship between compressive strength and pore structure of the high water grouting material with different water-binder ratios and CaO contents, the compressive strength was tested while pore structure including pore characteristic parameters and pore diameter distribution were investigated by BET, MIP, and 3D-XRM. Moreover, the evolution of hydration products was observed by TGA and SEM, illustrating the reactive mechanism of the material. Furthermore, the grey correlation coefficients between compressive strength and pore structure parameters were illustrated according to the grey correlation theory. The results show that CaO content in lime is proportional to the compressive strength with the water-binder ratio of 1.0 or 1.5, while the inverse trend appears with the water-binder ratio of 2.0. The high water grouting material belongs to the macropore material with the pores mainly within 100 nm to 2 μm. Its hydration products contain ettringite crystals, aluminum gels, and C-S-H gels. The productions of the hydration products are positively correlated with its compressive strength. In addition, the compressive strength of the high water grouting material is closely related to the pore characteristic parameters and the pore size distribution, especially the porosity, the most probable pore diameter, and the pore volumes within 100~500 nm and 10~100 nm.


2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3148 ◽  
Author(s):  
Hongyan Chu ◽  
Fengjuan Wang ◽  
Liguo Wang ◽  
Taotao Feng ◽  
Danqian Wang

Ultra-high-performance concrete (UHPC) has received increasing attention in recent years due to its remarkable ductility, durability, and mechanical properties. However, the manufacture of UHPC can cause serious environmental issues. This work addresses the feasibility of using aeolian sand to produce UHPC, and the mix design, environmental impact, and mechanical characterization of UHPC are investigated. We designed the mix proportions of the UHPC according to the modified Andreasen and Andersen particle packing model. We studied the workability, microstructure, porosity, mechanical performance, and environmental impact of UHPC with three different water/binder ratios. The following findings were noted: (1) the compressive strength, flexural strength, and Young’s modulus of the designed UHPC samples were in the ranges of 163.9–207.0 MPa, 18.0–32.2 MPa, and 49.3–58.9 GPa, respectively; (2) the compressive strength, flexural strength, and Young’s modulus of the UHPC increased with a decrease in water/binder ratio and an increase in the steel fibre content; (3) the compressive strength–Young’s modulus correlation of the UHPC could be described by an exponential formula; (4) the environmental impact of UHPC can be improved by decreasing its water/binder ratio. These findings suggest that it is possible to use aeolian sand to manufacture UHPC, and this study promotes the application of aeolian sand for this purpose.


Sign in / Sign up

Export Citation Format

Share Document