Investigation on the Property and Air Void Structure of Foamed Cement-Fly Ash-Steel Slag Concrete

2010 ◽  
Vol 150-151 ◽  
pp. 1457-1461 ◽  
Author(s):  
Yong Hao Fang ◽  
Quan Wen ◽  
Pin Dai

The properties and void structures of foamed concretes prepared from portland cement, fly ash, steel slag and foam agent were investigated. The results show that substituting cement by steel slag resulted in little change in dry bulk density, but reduced the compressive strength; on the other hand, when cement was substituted with fly ash, though the dry bulk density decreased, the compressive strength increased as the proportion of substitution increased from 30%to 45%. Increasing the volume fraction of the foam decreased greatly the dry bulk density and the compressive strength, and reduced the thermal conductivity as well. Image analysis on the air void structure shows that the larger air void fraction, the larger average void size and lower void roundness. There is a close correlation between the average mean Feret diameter and the average shape factor.

2015 ◽  
Vol 42 (10) ◽  
pp. 797-807
Author(s):  
Pangil Choi ◽  
Sung Il Jeon ◽  
Kyong-Ku Yun

Very-early-strength latex-modified concrete (VES-LMC) was developed for rapid repairs of distresses in concrete bridge decks and pavements, with the emphasis on early-age strength gain so that the repaired bridges and pavements can be opened to traffic within the time frame required in the specifications. However, there are two main concerns in the use of VES-LMC — early-age cracking and poor air void structure. The main objective of this study was to further improve VES-LMC to minimize early-age cracking and improve freeze–thaw durability, which included the use of fine fly ash (FFA) and calcium hydroxide (CH). Laboratory experiments were conducted on VES-LMC materials with cement replaced with FFA as well as CH, and various tests performed. Early-age drying shrinkages of VES-LMC containing both FFA and CH in the amounts evaluated in this study were smaller than that of VES-LMC with no replacements. It is expected that the use of FFA and CH in the range evaluated in this study will reduce the cracking potential of VES-LMC. Overall, the replacement of cement with FFA and CH improved the characteristics of entrained air void system, which will enhance the durability of VES-LMC against freeze–thaw damage. Scanning electron microscope and energy dispersive spectroscopy analysis indicate the primary mechanism of the generation of small sized air voids in concretes containing adequate amount of FFA and CH is the gas formation reaction between citric acid solutions and CH during concrete mixing. It is expected that the inclusion of adequate amounts of FFA and CH in VES-LMC will improve the performance of repaired bridge decks and pavements in terms of reduced cracking and improved freeze-thaw durability.


2020 ◽  
Vol 10 (2) ◽  
pp. 632 ◽  
Author(s):  
Hui Zhang ◽  
Peiwei Gao ◽  
Zhixiang Zhang ◽  
Youqiang Pan ◽  
Weiguang Zhang

Through laboratory testing, this research studied the connection between air-void structures of hardened concrete and fresh concrete and discussed the effects of the air-void structure on the salt-frost durability of the concrete. The results demonstrate that, in comparison with fresh concrete, the air-void spacing factor shows a close correlation with hardened concrete air-content and decreases in the form of a power function as the air-content increases. When the fresh concrete air-content is more than 6% and the hardened concrete air-void spacing factor is less than 0.18 mm, the influence of parameters of air-void structure on the salt-frost resistance of the concrete reduces. The air-void spacing factor more significantly affects the salt-frost resistance of the concrete compared with air content and the correlation reaches 0.93. Therefore, air-content and air-void spacing factor are recommended for dual control.


2021 ◽  
Vol 139 ◽  
pp. 106255
Author(s):  
Anna-Leena Erkkilä ◽  
Teemu Leppänen ◽  
Jussi Virkajärvi ◽  
Joni Parkkonen ◽  
Leena Turunen ◽  
...  

2019 ◽  
Vol 296 ◽  
pp. 173-179 ◽  
Author(s):  
Matěj Lédl ◽  
Lucie Galvánková ◽  
Rostislav Drochytka

This paper is focused on the effect of treatment of fly ash after selective non-catalytic reduction (SNCR) with tannin on autoclaved aerated concrete (AAC) production in order to reduce or stop ammonia leakage from the fresh mixture due to its alkalinity. A pure form of tannin and a tannin-based product „Farmatan“ were used as a treatment in dosage ranging from 0,5 g – 3 g of agent per 1 kg of fly ash. Efficient dosage was determined at 2 wt.% of fly ash by the speed of an indicator change due to gaseous ammonia diluted in water. The rheological properties of fresh mixtures were observed by consistency test in Viskomat showing that Farmatan causes delay of hydration. The results of bulk density and compressive strength testing revealed that Farmatan causes an increase of bulk density and at higher amount decreases the compressive strength because of thermal crack formation due to combined effect of delayed hydration and thixotropy. Using x-ray diffraction (XRD) analysis there were no differences in phase composition observed.


2013 ◽  
Vol 857 ◽  
pp. 110-115 ◽  
Author(s):  
Xiu Hua Zheng ◽  
Yong Ge ◽  
Jie Yuan

Air-entraining agent turely is one of the necessary compositions of the high durability concrete. The influence of air content and vibration time on the frost resistance of concrete was researched, and air void characteristics of hardened concrete was analysed. The results showed that the air contents could reduce the compressive strengthof hardened concrete excessively, but it made the spacing factor reduce obviously and significantly improve the frost resistance of concrete.The air voids with different structure in concrete were realized by vibration time. It was found that the air void structure and the frost resistance properties were influenced by the vibration time largely. The optimized vibration time is 30s, the appropriate vibration time is 20s~30s, no more than 35s.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Dong Dao ◽  
Hai-Bang Ly ◽  
Son Trinh ◽  
Tien-Thinh Le ◽  
Binh Pham

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model’s performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R2 = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R2 = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Sign in / Sign up

Export Citation Format

Share Document