Effect of Bamboo Fiber Modification on Tribological Performance of Brake Composites

2010 ◽  
Vol 150-151 ◽  
pp. 1801-1805 ◽  
Author(s):  
Fu Shan He ◽  
Cheng Hui Gao ◽  
Shao Yan Ye

In this paper, a novel no-asbestos brake composite reinforced by natural bamboo fibers is studied. The bamboo fibers are modified by heat treatment, alkali treatment and coupling treatment respectively. Tribological performance of different fibers reinforced composites are developed by means of friction test and microstructure observation. The results show that heat treatment of bamboo fibers at 140 for 4 hours makes the friction and wear characteristics of brake composites more stable than the untreated ones, but poor wear resistance at low temperature and heat fade still exist. There is no significant change on fiber surface. The alkali treatment of 17% NaOH solution for 12 hours contributes to desirable combination of higher friction coefficients and lower wear rates, and the surface morphology shows a number of deep grooves that avail the interface bonding. The effect of coupling treatment with KH550 on tribological performance of composites have the similar rule to that of the alkali treated ones except of heat fade, and the fiber surface is evenly coated with the coupling agent, which enhances the bonding of fibers and resin but fails at elevated temperature.

Wood Research ◽  
2021 ◽  
Vol 66 (2) ◽  
pp. 183-194
Author(s):  
Qiang Ma ◽  
Zhao Liu ◽  
Henglin Xiao ◽  
Zhi Chen

This paper presents an anticorrosive method to protect bamboo from the corrosion induced by coating a layer of epoxy resin on the surface of bamboo slices. Four surface modifications including heat treatment, alkali treatment, coupling treatment and acetylation treatment are applied to bamboo slices. The results indicate that the ultimate tension of bamboo slices decreases when corroded in solutions with different pH for different time, while epoxy resin protects the bamboo slices from corrosion to maintain the tensile properties by coated on its surface. The surface morphology indicates that four modifications have different degrees of influence on the surface and material of bamboo slices, which can reduce the ultimate tension of bamboo slices, but improve the interfacial combination between the surface of bamboo slices and epoxy resin. Acetylation treatment was the most effective modification analysed by Fourier-transform infrared spectroscopy (FT-IR) among them.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2682 ◽  
Author(s):  
Fang Wang ◽  
Min Lu ◽  
Shujue Zhou ◽  
Zhisong Lu ◽  
Siyan Ran

In this work, bamboo fibers are chemically modified with NaOH solution of 1, 4, and 7 wt% concentrations at room temperature, respectively, and subsequently the untreated and treated fibers are prepared with epoxy resin for unidirectional composites by hot pressing molding technique. Tensile and micro-bond tests are conducted on the composite specimens to obtain mechanical properties, such as tensile strength and modulus, elongation at break, and interfacial strength. Besides, scanning electron microscopy (SEM) is employed to perform morphological observations for constituent damages. In addition, the influence of alkali concentration on the thermal performance of epoxy-based composites is examined by using differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. It is found that composite tensile strength reaches the maximum when the alkali concentration is 4%, increased by 45.24% compared with untreated composites. The composite elongation at break increases on increasing the concentration. Inversely, the composite modulus decreases as the concentration increases. Besides, the results demonstrate that the chemical treatment on the fiber surface could improve interface adhesion, as observed from its topography by SEM. Micro-bond test reveals that there is maximum interfacial shear strength when the alkali concentration is 4%, which increases by 100.30% in comparison with the untreated samples. In case of thermal properties, the DSC analysis indicates that the glass transition temperature is maximized at 4% alkali concentration, which is increased by 12.95%, compared to those from unmodified fibers. In addition, TG results show that the 4% concentration also facilitates thermal stability improvement, indicative of superior interfacial bonding.


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8683-8703 ◽  
Author(s):  
Wei Song ◽  
Wenbang Wei ◽  
Congrong Ren ◽  
Shuangbao Zhang

New plywood composites for furniture and interior decoration were developed with eucalyptus veneers using polyethylene films as formaldehyde-free adhesives. To enhance the interfacial adhesion, the veneers were modified with an oven treatment (temperature: 100, 120, 140, and 160 °C; time: 0.5, 1.0, 1.5, and 2.0 h) or by soaking in a sodium hydroxide (NaOH) solution (concentration: 3%, 7%, and 11%; time: 12, 24, and 36 h). The effects of these treatments on the mechanical properties (flexural strength, MOR; flexural modulus, MOE; wet shear strength, WSS) of the composites were studied. Both treatments improved the three properties of the composites. The heat treatment was better at improving the shear property, while the alkali treatment was better at improving the flexural properties. For the heat treatment, the highest WSS was 81.1% higher than the untreated group. The optimum conditions for the heat treatment were 140 °C and 1.0 h. For the alkali treatment, the highest MOR and MOE were 267.5% and 173.7% higher than the untreated group, respectively. The optimum conditions for the alkali treatment were 3% and 36 h. The changes to the veneer surfaces were determined by scanning electron microscopy.


2021 ◽  
Vol 21 (3) ◽  
pp. 535-543
Author(s):  
Suhas Yeshwant Nayak ◽  
K. Rajath Shenoy ◽  
Rashmi Samant ◽  
Praneeth P. Sarvade ◽  
Satish Shenoy B ◽  
...  

Bamboo (Arundinaria clarkei) short fibers were treated with 6% conc. NaoH solution for five different durations viz. 3 h, 6 h, 9 h, 12 h and 24 h. Effect on physical properties like diameter and density were studied. Fibers were examined using Scanning Electron Microscope (SEM) to study the effect of alkali treatment on its surface characteristics. Single fiber tensile tests were conducted to assess the tensile strength of the fibers. Comparative study of the SEM micrographs indicated removal of outer layer with the surface irregularities becoming more prominent with increasing duration. The fiber surface was scanned using an Atomic Force Microscope (AFM) to quantify the increase in surface roughness with alkali treatment. Tests results showed positive effect on the strength till 6 h beyond which the tensile strength was observed to reduce. Fourier Transform Infrared (FTIR) spectroscopy results indicated reduction in content of holocellulose along with hemicellulose, lignin and cellulose which explains the variation in tensile strength with increasing duration of treatment.


2017 ◽  
Vol 7 (2) ◽  
pp. 49
Author(s):  
Henny Pratiwi

The development of high-performance engineering products made from natural resources is increasing worldwide. Kenaf plants have been extensively exploited over the past few years. Chemical treatment is considered to modify the fiber surface properties. In this study, kenaf bast fibers were treated with various concentrations of NaOH with different immersed time, immersed temperature, and dried temperature. Fiber bundle tensile were performed to evaluate the effect of treatments on the fiber tensile strength. Taguchi Methods are used in order to obtain the optimal parameter which could affect the tensile strength of kenaf fibers. Three-Level Orthogonal array is used to design the experiment. Finally, the experimental results will be evaluated using analysis of variance (ANOVA). The analysis of variance (ANOVA) shows that the most significant alkali parameter is NaOH concentration, which accounts for 40.19 percent of the total. It is also found that the optimum treatment is kenaf immersed in 3 wt. percent NaOH solution for 1 hour at 33 degrees celcius and dried at 60 degrees celcius which is supported by the Fourier Transform Infrared Spectroscopy.


2007 ◽  
Vol 539-543 ◽  
pp. 3706-3711
Author(s):  
Sengo Kobayashi ◽  
Koji Murakami ◽  
Kiyomichi Nakai ◽  
Makoto Hino

Microstructures of alkali- and/or heat-treated films on a Ti-15Zr-4Nb-4Ta alloy were analyzed by means of scanning electron microscopy, thin film X-ray diffraction and Auger electron spectroscopy. The cohesiveness of films was also evaluated by scratch tests. The films were formed by immersion in 5M aqueous NaOH solution at 60 °C for 86.4 ks (alkali treatment) followed by heating at 400–600 °C for 3.6 ks. The film on alloy formed by alkali treatment exhibits the same strucutre as that formed on an alkali-treated titanium. Compositional gradient of alloying elements, Zr, Nb and Ta, is detected in the film. The cohesion of alkali-treated film is considerably increased by the heat treatment, and the maximum cohesion is obtained by heating at 600 °C. The increase in cohesion of alkali-treated film by heat treatment is due to both the diffusion of Zr into film and the formation of sodium titanate on substrate.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2636
Author(s):  
Petr Valášek ◽  
Miroslav Müller ◽  
Vladimír Šleger ◽  
Viktor Kolář ◽  
Monika Hromasová ◽  
...  

Composite materials with natural fillers have been increasingly used as an alternative to synthetically produced materials. This trend is visible from a representation of polymeric composites with natural cellulose fibers in the automotive industry of the European Union. This trend is entirely logical, owing to a preference for renewable resources. The experimental program itself follows pronounced hypotheses and focuses on a description of the mechanical properties of untreated and alkali-treated natural vegetable fibers, coconut and abaca fibers. These fibers have great potential for use in composite materials. The results and discussion sections contribute to an introduction of an individual methodology for mechanical property assessment of cellulose fibers, and allows for a clear definition of an optimal process of alkalization dependent on the content of hemicellulose and lignin in vegetable fibers. The aim of this research was to investigate the influence of alkali treatment on the surface microstructure and tensile properties of coir and abaca fibers. These fibers were immersed into a 5% solution of NaOH at laboratory temperature for a time interval of 30 min, 1 h, 2 h, 3 h, 6 h, 12 h, 24 h, and 48 h, rinsed and dried. The fiber surface microstructures before and after the alkali treatment were evaluated by SEM (scanning electron microscopy). SEM analysis showed that the alkali treatment in the NaOH solution led to a gradual connective material removal from the fiber surface. The effect of the alkali is evident from the visible changes on the surface of the fibers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose This paper aims to investigate the tribological performance, i.e. abrasion resistance, friction coefficient and wear rates, of self-lubricated water conditioned polyamide6/boric oxide composites. Design/methodology/approach Polyamide6 and polyamide6/boric oxide self-lubricated composites were immersed in water for 15 days to analyze the effect of water conditioning on friction, wear and abrasion resistance. Tribological testing on pin-on-disc tribometer and abrasion resistance testing on TABER abrader were performed to see the friction coefficient and wear rates of materials. The scanning electron microscopy (SEM) characterizations were performed to analyze the wear tracks. Findings Tribological testing results revealed the loss in abrasive resistance, but there was an improvement in frictional coefficient and wear rates with steel after water absorption. The SEM images clearly show less depth of wear tracks in water-conditioned materials than dry ones. Water conditioning was found supportive in the formation of smooth lubricating transfer film on steel disc during the tribological testing. Originality/value The tribological behaviour of polymer composites is different in dry and in high humidity or water conditions. Experiments were performed to investigate B2O3 solid lubricant filler effectiveness on tribological behaviour of water-conditioned polyamide composites. Bonding between polyamide6 and water molecules plus the formation of orthoboric acid was found advantageous in decreasing the friction coefficient and wear rates of composites.


Sign in / Sign up

Export Citation Format

Share Document