scholarly journals Tribological Behavior and Analysis on Surface Roughness of CNC Milled Dual Heat Treated Al6061 Composites

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
A. Bovas Herbert Bejaxhin ◽  
G.M. Balamurugan ◽  
S.M. Sivagami ◽  
K. Ramkumar ◽  
V. Vijayan ◽  
...  

Dual heat treatment (DHT) effect is analyzed using the machining of Al6061-T6 alloy, a readily available material for quickly finding the machining properties. The heat treatments are conducted twice over the specimen by the furnace heating before processing through CNC machining. The HSS and WC milling cutters are preferred for the diameter of 10 mm for the reviewed rotational speeds of 2000 rpm and 4000 rpm, and the constant depth of cut of 0.5 mm is chosen based on various reviews. Worthy roughness could be provided mostly by the influence of feed rates preferred here as 0.05 mm/rev and 0.1 mm/rev. The influencing factors are identified by the Taguchi, genetic algorithm (GA), and Artificial Neural Network (ANN) techniques and compared within it. The simulation finding also helps to clarify the relationship between influenced machining constraints and roughness outcomes of this project. The average values of heat treated and nonheat treated Al6061-T6 are compared and it is to be evaluated that 41% improvement is obtained with the lower surface roughness of 1.78975 µm and it shows good surface finish with the help of dual heat treatment process.

2015 ◽  
Vol 830-831 ◽  
pp. 100-103
Author(s):  
L. Gopinath ◽  
S. Ravishankar

The form, shape and dimensions of the scaled down winglet model become small and thin bringing complexity to manufacturing. The trailing edge tapers to a thickness varying from 0.065mm to 0.099mm along its length. The mounting portion of the winglet is provided with a close tolerance having a slot gap of 5mm and a depth of 35 mm with an angle. Additionally, wind tunnel models require good surface finish on the aerodynamic surfaces and this involves adopting a manufacturing strategy with a control over on the metal cutting parameters to be implemented on a three axes CNC machining centre. The winglet surface is divided into segments in order to handle the cutting forces on the varying aerodynamic cross section. Various metal cutting parameters such as tool path, cutter diameter, feed rate, depth of cut, spindle speed, etc., are evaluated by monitoring segments where the metal cutting is carried out [1] and flow of chips observed. Fixtures and lugs are planned effectively to accommodate the machining of the angular slot in a three axes machining centre itself. Routing of operations to handle the varying thin sections and realisation of the close tolerance slot has enabled a reliable manufacturing approach in an economical way.


2011 ◽  
Vol 291-294 ◽  
pp. 810-815 ◽  
Author(s):  
Qi Wu ◽  
Jun Wang

An experimental study of the pulsed laser milling process for a sintered polycrystalline diamond is presented. The characteristics and quality of the cavities machined with a Yd laser under different pulse energies, pulse overlaps, scan overlaps and numbers of passes are discussed, together with the effects of these parameters on the cavity profile, depth of cut and surface roughness. A statistical analysis is also presented to study the relationship between the process parameters and surface roughness. It shows that the optimum pulse overlap and pulse energy may be used to achieve good surface finish, whereas scan overlap and number of passes can be selected to improve the depth of cut without much effect on the surface finish.


2019 ◽  
Vol 805 ◽  
pp. 3-7
Author(s):  
Manus Sriswat ◽  
Kittipong Kimapong ◽  
Atthakorn Chanchana

Grinding process is necessary final process of making cylindrical parts with less than Ra 0.4 surface roughness. Generally we cannot obtain good surface quality without grinding process. As the experience of the authors, using CBN (Cubic Boron Nitride) insert to turning cylindrical parts could be obtained Ra 0.438 surface roughness. The surface roughness result is similar to ground parts. This result becomes the main focus of the study. Authors study to find out factors affecting CBN performance in turning with CBN to obtain less than Ra 0.4 surface roughness. According to the study, it was found that tool contact area allied to surface roughness. The experiment is turning S45C medium carbon steel under the following condition: Cutting speed is 300 m./min, Feed is 0.05 mm./rev and depth of cut is 0.1 mm. Experiment under the same condition in different contact area. Modify contact area of CBN insert to be 5,10,15,20 and 25 mm. and testing in order. CBN insert standard type contact area is 0 mm. Compare test results of modified CBN inserts with standard type result. The results of experiments were as follows: 1) Turning steel with CBN contact area 10 mm. was obtained Ra 0.456 surface roughness, 2) Turning steel with CBN contact area 15 mm. was obtained Ra 0.293 surface roughness, Thus less than Ra 0.4 surface roughness.


2001 ◽  
Vol 711 ◽  
Author(s):  
Alisa S. Morss ◽  
Philip Seifert ◽  
Adam Groothius ◽  
Danielle Bornstein ◽  
Campbell Rogers ◽  
...  

ABSTRACTEndovascular stents can be altered to improve radioopacity by applying a gold coating. We examined the vascular response in porcine coronary arteries to implantation of 9 mm NIR® stents that were either left intact, gold-coated, or heat-treated following gold coating. Our results show that while gold coating exacerbates neointimal hyperplasia and the inflammatory response, heat treatment removes this negative effect. Heat treatment was shown to increase the diffusion at the gold-steel interface and reduce the surface roughness.


2015 ◽  
Vol 809-810 ◽  
pp. 195-200
Author(s):  
Constatin Rotariu ◽  
Sevasti Mitsi ◽  
Dragos Paraschiv ◽  
Octavian Lupescu ◽  
Sergiu Lungu ◽  
...  

In this paper we analyze the influence of cutting parameters on the surface quality, surface roughness respectively, processed by turning when heat treated bearing steel, also called hard turning, and processing by turning of bearing steel without heat treatment. We set parameters of the cutting regime influencing the achievement of roughness surfaces which must be within the predetermined requirements if bearing rings exceeding 500 mm in diameter. This analysis will be done by statistical methods using the software Minitab 14.


2012 ◽  
Vol 217-219 ◽  
pp. 1880-1884 ◽  
Author(s):  
Chun Jiang Zhou ◽  
Jian Cheng Liu ◽  
Adrian Avila

This paper is to experimentally investigate the mechanical micro machining properties of AL6061-T6 using tungsten-carbide micro end mills. The cutting simulation based on Finite Element Analysis (FEA) method is also conducted to estimate cutting forces, cutting temperature, and minimum chip thicknesses. The simulation results are used for the determination of experimental machining conditions such as depth of cut, feed rates and cutting speeds. A number of slot micro-milling experiments were performed using 400um diameter micro end mills on a 3 Axis CNC machining center attached with a high precision and high speed spindle unit. The machined surface quality, geometric feature shape, cutting burr generation as well as build-up edges are observed in the cutting experiments. Optimum cutting parameters for a better surface quality and smaller burr sizes are suggested.


2010 ◽  
Vol 7 (2) ◽  
pp. 425-433
Author(s):  
C. Thiagarajan ◽  
R. Sivaramakrishnan ◽  
S. Somasundaram3

This paper deals with an experimental study on the grindability of Al/SiC metal matrix composites in cylindrical grinding. Machining of metal matrix composites (MMCs) is an area to be focused and finishing processes such as grinding to obtain a good surface finish and damage-free surfaces are crucial for the application of these materials. Nevertheless, grinding of MMCs has received little attention so far, thereby a detailed study on that has been carried out. In the present work, experiments are carried out to study the effect of grinding parameters; wheel velocity, work piece velocity, feed and depth of cut and SiC volume fraction percentage on the responses; grinding force, surface roughness and grinding temperature. Surface integrity of the ground surfaces is assessed using a scanning electron microscope (SEM). There are no cracks and defects found on the cylindrical ground surfaces at high wheel and work piece velocities, low feed and depth of cut.


Author(s):  
Chetan Darshan ◽  
Lakhvir Singh ◽  
APS Sethi

Manufacturers around the globe persistently looking for the cheapest and quality manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the produced parts. The surface quality is influenced by cutting speed, feed rate and depth of cut and many other parameters. In the present study attempt has been made to evaluate the performance of ceramic inserts during hard turning of EN-31 steel. The analysis of variance is applied to study the effect of cutting speed, feed rate and depth of cut on Flank wear and surface roughness. Model is found to be statically significant using regression model, while feed and depth of cut are the factor affecting Flank wear and feed is dominating factors for surface roughness. The analysis of variance was used to analyze the input parameters and there interactions during machining. The developed model predicted response factor at 95% confidence level.


2014 ◽  
Vol 14 (4) ◽  
pp. 257-267 ◽  
Author(s):  
Pandu R. Vundavilli ◽  
B. Surekha ◽  
Mahesh B. Parappagoudar

AbstractResin bonded sand system is an emerging area, and it can be used to produce dimensionally accurate castings with good surface finish. In the present paper, experimental investigations are carried out on the resin bonded cores, to develop a non-linear mathematical model, using the concept of design of experiments. Subsequently, an artificial neural network (ANN) with four neurons each on input and output layers has been used to model the resin bonded sand system. It is important to note that the process parameters, such as percentage of resin, percentage of hardener, number of strokes and curing time are considered as inputs and the mechanical properties of the core, namely compression strength, tensile strength, shear strength and permeability are treated as the outputs of the network. It is to be noted that the performance of developed ANN depends on several factors of the network, such as type of transfer functions, coefficients of transfer functions, number of neurons in the hidden layer and connecting weights between different layers. In the present study, two population based search and optimization algorithms, namely genetic algorithm (GA) and artificial bee colony (ABC) are used for optimizing the parameters of ANN. It has been observed that both GA and ABC trained neural networks (that is, GA-NN and ABC-NN) are found to have good agreement with the experimental data and can be used effectively to model the resin bonded core sand system.


2010 ◽  
Vol 156-157 ◽  
pp. 392-395
Author(s):  
Md Raihanuzzaman Rumman ◽  
Soon Jik Hong

Maintaining good surface quality usually involves additional manufacturing cost or loss of productivity. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were the operating chamber temperature and the usage of different tool inserts in the same specification. An orthogonal array of L9 (34) was used and the optimal cutting combination was determined by seeking the best surface roughness (response) and signal-to-noise ratio.


Sign in / Sign up

Export Citation Format

Share Document