Influences of Tunnel Excavation Blasting Vibration on Surface High-Rise Building

2010 ◽  
Vol 163-167 ◽  
pp. 2613-2617
Author(s):  
Hai Liang Wang ◽  
Tong Wei Gao

According to the 33 floors high building, blasting vibration monitoring had been carried on. The building, along Yunnan road tunnel of Qingdao Cross-harbor Tunnel Guide Line Project, has concrete frame structure. Monitoring data had been analyzed. Results showed that rules of vertical vibration velocity and main vibration frequency have similar relevance. Amplification effect of them was existed on the middle and top of the building. From the 2nd floor of downward ground to ground, the value of them suddenly decreased. Main vibration frequency is in the range of 101~102 order of magnitude.

2011 ◽  
Vol 199-200 ◽  
pp. 874-877
Author(s):  
Hai Liang Wang ◽  
Li Wang ◽  
Li Sheng Liu ◽  
Bi Jun Wang

According to the 20 layers reinforced concrete frame-shear wall structure building, we carried on blasting vibration monitoring in Qingdao Cross-harbor Tunnel Guide Line Project. The monitoring data of vertical vibration velocity and vertical vibration frequency had been analyzed. The results show vertical vibration velocity and vertical vibration frequency had part of intrinsic association. Vertical vibration velocity was enlarged on the top of the building. Vertical vibration frequency was in the range of 101-102 order of magnitude.


2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Fan Chen ◽  
Gengsheng He ◽  
Shun Dong ◽  
Shunjun Zhao ◽  
Lin Shi ◽  
...  

The vibration produced by blasting excavation in urban underground engineering has a significant influence on the surrounding environment, and the strength of vibration intensity involves many influencing factors. In order to predict the space-time effects of blasting vibration more accurately, an automatic intelligent monitoring system is constructed based on the rough set fuzzy neural network blasting vibration characteristic parameter prediction model and the network blasting vibrator (TC-6850). By setting up the regional monitoring network of monitoring points, the obtained monitoring data are analyzed. An artificial intelligence model is used to predict the influence of stratum condition, excavation hole, and high-rise building on blasting vibration velocity and frequency propagation. The results show that the artificial intelligence prediction model based on a rough set fuzzy neural network can accurately reflect the formation attenuation effect, hollow effect, and building amplification effect of blasting vibration by effectively fuzzing and standardizing the influencing factors. The propagation of blasting vibration in a soil–rock composite stratum is closely related to the surrounding rock conditions with a noticeable elastic modulus effect. The hollow effect is regional, which has a significant influence on the surrounding ground and buildings. Besides, the blasting vibration of the excavated area is stronger than that of the unexcavated area. The propagation of blasting vibration on high-rise buildings was complicated, of which the peak vibration velocity is maximum at the lower level of the building and decreased with the rise of the floor gradually. The whip sheath effect appears at the top floor, which is related to the blasting vibration frequency and the building’s natural vibration frequency.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5140
Author(s):  
Nan Jiang ◽  
Yuqi Zhang ◽  
Chuanbo Zhou ◽  
Tingyao Wu ◽  
Bin Zhu

The construction of metro line energy management center (MLEMC) is one of the important parts of metro line, which is the key organization to realize the energy consumption management of the metro operation. To protect the safety of adjacent high-rise buildings during the blasting of subway foundation pit engineering, it is crucial to study the response characteristics of building structures. This paper takes the MLEMC vertical pit blasting project of Wuhan Metro Line 8 as an example. The law of blasting vibration attenuation along the earth’s surface and the vibration velocity response characteristics of the building structure were analyzed by small explosive test. LSDYNA numerical model was established, and the reliability of the model and parameters was verified by experimental data. Combined with the relevant specifications, the maximum charge in single delay was calculated and analyzed. The numerical model of the maximum charge in single was established, and the prediction model of the vibration velocity related to the floors of high-rise buildings was further proposed. Combined with the failure principle of reinforced concrete structure, the safety of high-rise buildings under blasting vibration was analyzed and evaluated.


2010 ◽  
Vol 163-167 ◽  
pp. 2608-2612 ◽  
Author(s):  
Hai Liang Wang ◽  
Tong Wei Gao

According to fire station of Tuandao road along to the Yunnan road tunnel of Qingdao Cross-harbor Tunnel Guide Line Project, the blasting vibration test was carried on. This building is three-storied brick-and-concrete building. Then monitoring data of particle vibration velocity was analysised and researched. The results showed that there is magnifying effect of vertical vibration velocity on the roof of the building, but its value is lesser than particle vibration velocity of the first layer. Horizontal tangential vibration velocity was existed on the central of the building. However there was no magnifying effect of horizontal radial vibration velocity. And its value is decreased rapidly from the first layer to the second layer, and then other floors basically keep steady.


2015 ◽  
Vol 744-746 ◽  
pp. 982-987
Author(s):  
Yong Ming Han ◽  
Yi Zhou ◽  
Hai Liang Wang

Put the first Phase Project of Qingdao Metro (line 3) civil 03 bid section TAI-YAN interval of blasting construction as the background In this paper,select the test section to blasting test,in groundposition on the ais of the tunnel workface arrange the measuring points and location of measuring points remain the same.Based on the measured data, studied on the law of blasting vibration of cutting parts of each of the driving cycle.The research result show that the cutting part of vibration velocity peak appeared in behind the tunnel woekface 1~3m;Rear vibration composite speed of the tunnel workface is speed of the tunnel workface is 1.0~1.4 times in front of the particle vibration composite speed;The main vibration frequency in front of tunnel workface and rear particles are above 15HZ.


2012 ◽  
Vol 446-449 ◽  
pp. 2462-2465 ◽  
Author(s):  
Hong De Wang ◽  
Xiu Feng Shen

Abstract. Through the analysis and research on the vibration effect caused by the urban New Austrian (shallow embedded) metro tunnel blasting construction, the main harming effect of the blasting vibration on the surface buildings is summarized. According to the actual condition on the site of blasting construction in No.2 line of Dalian metro tunnel, the reasonable vibration monitoring plan for blasting vibration wave is established. At the same time, by means of the regression analysis about the monitoring results of blasting vibration, the vibration wave’s regression formula are set up, which can expression the correlation among the vibration velocity, the charge weight, the distance between the blasting fountains and the buildings. The results show that the Sadaovsk formula can be use to describe the effect of the metro tunnel blasting construction on the surface buildings accurately and reasonably in this construction segment. This kind of regression analysis method can be use to direct subsequent blasting excavation.


2011 ◽  
Vol 243-249 ◽  
pp. 5440-5443 ◽  
Author(s):  
Zhi Zheng Yin

In this paper, the blast vibration was monitored and the data from an underground engineering were analyzed. The empirical formula of the relation between the maximum vertical direction vibration velocity and the scaled explosive charge, the maximum horizontal radius direction vibration velocity and the scaled explosive charge, the maximum horizontal tangential direction vibration velocity and the scaled explosive charge were determined. According to the blasting safety regulations, the safety standard of the blasting vibration velocity is less than 7.0 cm/s. Through monitoring and inspection, the safety evaluation of the secondary lining of the highway tunnel was made. The safety evaluation of the protected highway tunnel is safety under the blasting vibration.


2014 ◽  
Vol 1021 ◽  
pp. 152-155 ◽  
Author(s):  
Jian Jian Zhang ◽  
Yong Sheng Zhang

The structure of the dynamic characteristics can comprehensively reflect the seismic performance of the structure. By high sensitivity under external excitation vibration pickup pick structure dynamic response to obtain the dynamic characteristics of buildings, this paper introduces the principle of vibration test and modal identification method of information. To high-rise shear wall of reinforced concrete frame structure of a residential building as an example, has carried on the test, through the test results of the seismic performance of this structure after reinforcement.


2011 ◽  
Vol 90-93 ◽  
pp. 2301-2306
Author(s):  
Zheng Guo Zhu ◽  
Ming Lei Sun ◽  
Yong Quan Zhu ◽  
Xing Liang Sun

In accordance with characteristics of super-small-distance tunnels in Nanjing metro, the peak value distribution of vibration velocity for existing tunnel was investigated when cut-hole blasted under the conditions of different surrounding rock Grades, followed by dynamic response rule of super-small-distance tunnels blasting. In addition, monitoring emphasis should be placed on upper bench for right tunnel blasting. Therefore, controlled measures of the small-distance tunnels were obtained during construction. Not only is the result fit for the metro tunnel, but it can be as reference for similar engineering.


2014 ◽  
Vol 971-973 ◽  
pp. 992-996
Author(s):  
Chun Lei Xin ◽  
Bo Gao

Although drilling and blasting method is widely used to excavate tunnel structures, it has great effect on adjacent ground structures. In order to find out the influence sphere and features of this construction method on overpass, three-dimensional numerical simulation method was used to analyze the displacement, stress and blasting vibration velocity of overpass. The results show that: (1) Drilling and blasting excavation method can cause differential settlement of stratum and overpass which is above the crown of tunnel. (2) The strong constraint structures of overpass are obviously affected by blasting vibration than other parts. (3) It should be taken extra protection measures at connection points between piers and decks as well as connection points between piers and stratum. (4) Horizontal vibration velocity caused by blasting excavation is lower than vertical vibration velocity. To control the vertical blasting vibration velocity is the essential to control the security of tunnel structure and upper structures. The above results certainly contribute to construct tunnel structures by using drilling and blasting excavation under complicated conditions.


Sign in / Sign up

Export Citation Format

Share Document