MODELLING of Delfcetion Performance in Partially Bonded CFRP Prestressed Beams

2010 ◽  
Vol 168-170 ◽  
pp. 2204-2207
Author(s):  
Yu Deng ◽  
Jiong Feng Liang

six partial bonded concrete beams prestressed with CFRP tendons are tested under monotonic loads. deformation of this kind of beams with varying unbonded length are systematically investigated. full-range analysis for deflection performance of partial bonded CFRP prestressed beams is performed by using ADINA. The analytical results agree well with the experimental results.

2010 ◽  
Vol 168-170 ◽  
pp. 2182-2185
Author(s):  
Yu Deng ◽  
Jiong Feng Liang

Concrete beams reinforced with fiber reinforced polymer(FRP)bars exhibit large deflections and crack widths as compared to concrete beams reinforced with steel due to the low modulus of elasticity of FRP. Consequently,in many cases,serviceability requirements may govern the design of such members. This paper describes six partial bonded concrete beams prestressed with CFRP tendons are tested under monotonic loads. deformation and crack width of this kind of beams with varying unbonded length are systematically investigated. The predictions of the 《Code for Design of Concrete Structures》(GB50010-2002)equations are compared with the experimental results obtained by testing six partial bonded concrete beams prestressed with CFRP tendons. Good agreement was shown between the theoretical and the experimental results.


2021 ◽  
pp. 136943322110093
Author(s):  
Jinqing Jia ◽  
Qi Cao ◽  
Lihua Zhang ◽  
Jiayu Zhou

Concrete made by post-filling coarse aggregate process could reduce the cement content greatly compared with traditional concrete placement method. Thus, it not only lowers the production cost of concrete through lower usage of cement but also reduces the CO2 emissions to the environment. In this paper, the compressive and tensile strength of post-filling coarse aggregate concrete with different post-filling ratios (PFRs) (0%, 10%, 15%, 20%, 25%, 30%) and concrete strength grades (C30, C40, C50) were first studied. Then the flexural performance of nineteen concrete beams with different concrete strength, post-filling ratios, reinforcement ratios was investigated. The experimental results showed that the compressive strength and elastic modulus of the post-filling coarse aggregate concrete increased with the increase of the post-filling ratio of coarse aggregate, reaching the peak value at the filling ratio of 20%. It indicated that there was no obvious difference in the failure mode as well as middle-span deflections between post-filling coarse aggregate concrete (PFCC) beams and ordinary concrete (OC) beams. Ductile failure was observed for all nineteen specimens. Results demonstrated that the cracking load, yield load, and ultimate load of the post-filling coarse aggregate concrete beams all reached the peak value at the post-filling ratio of 20%. In addition, the theoretical predictions of cracking loads and ultimate load carrying capacities matched the experimental results in satisfactory agreement.


1995 ◽  
Vol 117 (4) ◽  
pp. 298-304 ◽  
Author(s):  
T. Sawa ◽  
R. Sasaki ◽  
M. Yoneno

This paper deals with the strength and the sealing performance of pipe flange connections combining the bonding force of adhesives with the clamping force of bolts. The epoxy adhesives or anaerobic sealants are bonded at the interface partially instead of gaskets in pipe flange connections. The stress distribution in the epoxy adhesives (anaerobic sealant), which governs the sealing performance, and the variations in axial bolt force are analyzed, using an axisymmetrical theory of elasticity, when an internal pressure is applied to a connection in which two pipe flanges are clamped together by bolts and nuts with an initial clamping force after being joined by epoxy adhesives or anaerobic sealant. In addition, a method for estimating the strength of the combination connection is demonstrated. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination connections. It can be seen that the strength of connections increases with a decrease in the bolt pitch circle diameter. Furthermore, it is seen that the sealing performance of such combination connections in which the interface is bonded partially is improved over that of pipe flange connections with metallic gaskets.


2005 ◽  
Vol 2 (2) ◽  
pp. 137-146
Author(s):  
Tijana Randjelovic ◽  
Jugoslav Jokovic ◽  
Bratislav Milovanovic

In this paper, a real microwave applicator with a wave guide used to launch the energy from the source into the cavity is analyzed using 3D TLM method. In order to investigate the influence of the positions and number of feed wave guides to the number of the resonant modes inside the cavity, obtained results are compared with analytical results and results obtained by using TLM software with an impulse excitation as well. TLM method is applied to the both empty and loaded rectangular metallic cavity, and a very good agreement between simulated and experimental results is achieved.


2020 ◽  
Vol 1002 ◽  
pp. 604-614
Author(s):  
Hayder Hussein H. Kammona ◽  
Muhammad Abed Attiya ◽  
Qasim M. Shakir

This study simulates a procedure of rehabilitation of reinforced concrete beams with the aid of ANSYS 17 software. In this work, the BIRTH and DEATH procedure (in ANSYS) was adopted to model the post-repairing stage. This aspect has rarely been considered by previous studies that utilized a carbon fiber reinforced polymer (CFRP) sheet when retrofitting. To verify the suggested technique, six specimens were analyzed with two values of shear span-to-depth ratios (3 and 4) and three spaces of CFRP sheets (100mm, 150mm and 200mm). The effect of the repairing process on the structural performance of the retrofitted beam is also investigated.It is found that the suggested technique yielded a good agreement with the experimental results and the maximum differences in the failure loads between the numerical and experimental results were 10% and 4% for shear span-to-depth ratios of 3 and 4, respectively. It was also ascertained that upgrading reinforced concrete members within the early stages of loading showed a better enhancement in the loading capacity compared to upgrading reinforced concrete members close to the juncture of failure.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunyu Fu ◽  
Dawei Tong ◽  
Yuyang Wang

Concrete cracking causes a gradual change in strain distributions along the cross section height of reinforced concrete beams, which will finally affect their instantaneous stiffness. A method for assessing the stiffness is proposed based on the gradual change, which is considered through modeling different strain distributions for key sections in cracked regions. Internal force equilibria are adopted to find a solution to top strains and neutral axes in the models, and then the inertias of the key sections are calculated to assess the beam stiffness. The proposed method has been validated using experimental results obtained from tests on five reinforced concrete beams. The predicted stiffness and displacements are shown to provide a good agreement with experimental data. The instantaneous stiffness is proven to greatly depend on the crack number and depth. This dependence can be exactly reflected by the proposed method through simulating the gradual change in concrete strain distributions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
In-Hwan Yang ◽  
Jihun Park ◽  
Kyoung-Chul Kim ◽  
Hyungbae Lee

The structural behavior of concrete beams containing recycled coarse aggregates (RCAs) was investigated in this study using detailed experimental data. Twelve concrete beams were tested in the experimental program: nine beams with varying RCA contents and three control beams with natural coarse aggregates (NCAs). The parameters for investigating the structural behavior of the RCA concrete beams under flexure were the RCA content (30%, 50%, and 100%) and tensile rebar ratio (0.50%, 0.79%, and 1.14%). The crack pattern of the RCA beams was similar to that of the NCA beams; however, the RCA beams exhibited smaller crack spacing than the NCA beams. The flexural strength was slightly affected by the RCA content. However, the ductility of the beam was not significantly influenced by the RCA content. A comparison of the experimental results and the calculations from the ACI 318 and EC 2 provisions for the flexural strength showed that the current provisions conservatively predicted the flexural strength of the RCA concrete beams.


Sign in / Sign up

Export Citation Format

Share Document