Biodegradation of Swainsonine by Stenotrophomonas maltophilia Strain YLZZ-2 and its Isolation and Identification

2010 ◽  
Vol 178 ◽  
pp. 59-64
Author(s):  
Xing Hua Zhao ◽  
Xin He ◽  
Jian Hua Wang

Eight swainsonine (SW)-degrading bacteria were isolated from the soil where locoweed was buried for 6 months and one of the strains (YLZZ-2) was selected for further study. Based on morphology, physiologic tests, 16S rDNA sequence, and phylogenetic characteristics, the strain showed the greatest similarity to members of the order Stenotrophomonap and the closest to members of the Stenotrophomonas maltophilia group. The ability of the strain to degrade SW, as sole carbon source, was investigated under different culture conditions. The preferential temperature and initial pH value for the strain were 25~35 °C and 6.0~9.0, respectively. The optimal temperature for the strain was 30 °C and the optimal pH value was 7.0. There was positive correlation between degradation rate and inoculation amount. The growth of stain YLZZ-2 and degradation rate were fast, and YLZZ-2 could completely degradate 400 mg/L swainsoine within 24 h. There was a linear relationship between the growth of stain YLZZ-2 and degradation of swainsonine. These results highlight the potential of this bacterium to be used in detoxifying of SW in livestock consuming locoweed.

Author(s):  
Xuanjiang Yang ◽  
Panpan Guo ◽  
Miao Li ◽  
Hualong Li ◽  
Zelin Hu ◽  
...  

(1) Objective: The objective of this study was to screen amoxicillin (AMX)-degrading bacterial strains in pig manure and optimize the fermentation conditions for these strains to achieve high fermentation rate, which can provide an effective way for the practical application of bacterial strains as antibiotic-degrading bacterial in treating livestock waste for antibiotic residues. (2) Methods: Antibiotic susceptibility tests and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) were employed to screen AMX-degrading bacterial strains in pig manure. The culture conditions were optimized for AMX-degrading bacterial strains using Plackeet–Burman design (PBD), the steepest ascent design, and the response surface methods, coupled with the Box–Behnken design (BBD). The effects of culture time, temperature, rotator (mixing) speed, inoculum level, and initial pH value on the growth of AMX-degrading strains were investigated. Experimental data obtained from BBD were utilized to generate a second-order polynomial regression model for evaluating the effects of the tested variables on the optical density at 600 nm (OD600) of culture solutions as the growth indicator for the screened AMX-degrading strains. (3) Results: The initial pH, culture time, and the inoculum level had significant effects on the OD600 value (growth) of the screened AMX-degrading strains. The initial pH value was found to be the most critical factor influencing the growth of bacteria. The optimized culture condition for the bacterial growth determined by the response surface methodology was: the initial pH of 6.9, culture time of 52 h, and inoculum level of 2%. The average OD value of 12 different fermentation conditions in the initial fermentation tests in this study was 1.72 and the optimization resulted in an OD value of 3.00. The verification experiment resulted in an OD value of 2.94, which confirmed the adequacy of the optimization model for the determining the optimal culture condition. (4) Conclusions: The growth of the screened strain of AMX-degrading bacteria could be optimized by changing the fermentation conditions. The optimization could be achieved by using the Box–Behnken response surface method and Plackett–Burman experimental design.


2021 ◽  
Vol 2 (6) ◽  
pp. 1-5
Author(s):  
R. E. Aso ◽  
C. Hammuel ◽  
M. Daji ◽  
J. Briska

Glyphosate-based herbicides are often used for the control of weeds grown on agricultural fields or farms. Different health problems have been reported to be associated with the use of glyphosate-based herbicides mainly due to their toxicity level. Thus, finding glyphosate utilizing microorganisms to remediate the glyphosate-based herbicides in the environment is crucial. The culture conditions for maximum utilization of glyphosate by bacterial isolates, Stenotrophomonas maltophilia, Bacillus cereus and Enterobacter aerogenes previously isolated from Ugini stream close to corn fields treated with glyphosate-based herbicide at Ofagbe, Delta State, Nigeria were optimized using mineral salt medium containing glyphosate as carbon source. The varied culture parameters assessed were temperature (30, 37 and 40 oC), pH (5, 6, 7, 8 and 9), initial glyphosate concentration (1, 3, 5, 7 and 9 g/L) and incubation time (2-14 days). Optical density (OD) at 560 nm of the culture was used to estimate cell growth or cell load of the glyphosate utilizing bacteria strains at every 2 days for 14 days. The following optimal conditions were determined: initial pH 9.0, incubation temperature 30 °C, initial concentration of glyphosate (1g/L) and incubation time of 12 days. Of the isolates on the medium containing the herbicide as sole carbon and energy source, Bacillus cereus showed the highest growth level (OD average, 0.127, pH average, 6.26. This was followed by Stenotrophomonas maltophilia (OD average = 0.114, pH average = 6.44) and Enterobacter aerogenes (OD average = 0.100, pH average, 6.56). At the increased of glyphosate in the medium there was decreased in growth of the bacteria. Bacillus cereus, Stenotrophomonas maltophilia and Enterobacter aerogenes indicated a high capacity to be able to degrade glyphosate. It is therefore concluded that the bacteria employed in this research can be recommended for bioremediation of environments contaminated with this chemical and further research should conducted to ascertain the catabolic genes present in these individual glyphosate degrading bacteria.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Suwapha Sawiphak ◽  
Aroon Wongjiratthiti

Polylactic acid (PLA) is increasingly used in food-packaging production. The screening of PLA-food-packaging-degrading bacteria and optimisation of culture conditions for the PLA-food-packaging degradation by PLA-food-packaging-degrading bacteria were investigated for bioplastic waste management purposes. Only bacterial strain SNRUSA4 exhibited an increase in optical density (OD) in Basal Medium (BM) supplemented with 1.0 g/L of PLA-food-packaging as sole carbon source after 4 weeks of incubation. A weight loss of 7.3% and the rough and porous surface of PLA-food-packaging indicated that SNRUSA4 was a PLA-food-packaging-degrading bacterium. SNRUSA4 was able to degrade pure PLA which was confirmed from the clear zone formation around its colony on emulsified pure PLA agar plate. The 16S rRNA gene sequence of SNRUSA4 showed the similarity with thirteen Bacillus species. Hence, the strain SNRUSA4 was assigned as Bacillus sp. SNRUSA4. Response surface methodology with Box-Behnken Design was used to optimise the culture conditions including yeast extract concentration, initial pH value, temperature and agitation speed for growth and PLA-food-packaging degradation of Bacillus sp. SNRUSA4. The optimal conditions of Bacillus sp. SNRUSA4 was discovered in BM at initial pH value 7.02 with yeast extract concentration of 2.56% and agitated at 205.28 rpm at 31.68°C. Under optimal conditions, the OD of Bacillus sp. SNRUSA4 was up to 1.955, and the different OD between before and after optimisation was up to 1.752. Furthermore, the PLA-food-packaging weight loss also increased from 7.30% to 87.10% indicating that the PLA-food-packaging degradation under optimal conditions was higher than the unoptimised conditions. Therefore, Bacillus sp. SNRUSA4 is an efficient strain for degradation of PLA and PLA-food-packaging.


2012 ◽  
Vol 550-553 ◽  
pp. 1248-1252
Author(s):  
Rui Dan Xu

Two kinds of polyacrylamide(HPAM)-degrading bacteria S1, S2, which can use HPAM as only nitrogen source and the sole carbon source, were isolated from petroleum-contaminated soil of Daqing Oilfield. The bioremediation for treating petroleum contaminated soil by immobilized microorganisms can improve the effect on biodegradation for pollutants in oil fields and reduce the loss of bacteria. The degradation ability of five kinds of embedding immobilization methods on soil pollutant was investigated. The experimental results showed that the immobilized microbial granules, which used polyvinyl alcohols (PVA) and sodium alginate as coagulant, activated carbon as coagulant-support, exhibited good mechanical strength, operated easily, be not breakable and low cost. Experiments results showed that after treatment using this kind of immobilized microbial granules, the HPAM concentration declined from 500 mg•L-1 to 102 mg•L-1 in 48 hours. The degradation rate of HPAM reached 79.6%. At the same time crude oil content decreased from 733.21 mg•L-1 to 9.5 mg•L-1. These immobilized microbial granules can remove 98.7% oil from the petroleum-contaminated soil in 48 hours.


2021 ◽  
Author(s):  
Sijie Wei ◽  
Guanjie Zhuang ◽  
Lirijian Cheng ◽  
Shoubing Wang

Abstract This study investigated the characteristics of the proliferation process of Microcystis aeruginosa and its changes to environmental pH values under different initial pH values and different initial inoculation densities. The results showed that although the initial pH value or the initial inoculation density was different, the pH values of the culture systems fluctuated up and down throughout the proliferation of M. aeruginosa, both on a daily and hourly time scale, and then tended to stabilize around the same value of 10.0 at the end of proliferation. The optimal pH value for the proliferation of M. aeruginosa was 9.56. This study creatively proposes that the period when the environmental pH value starts to rise rapidly toward 9.0 could be selected as an early warning period for a cyanobacterial outbreak, and the environmental pH value could be adjusted to below 8.0 to delay the outbreak. These results provide a scientific basis for further understanding the mechanism of cyanobacterial blooms and formulating pH-based control strategies.


2011 ◽  
Vol 8 (4) ◽  
pp. 1582-1587 ◽  
Author(s):  
M. Mohsen Nourouzi ◽  
T. G. Chuah ◽  
Thomas S. Y. Choong ◽  
C. J. Lim

Mixed bacteria from oil palm plantation soil (OPS) were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA) (99.5%). It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strainsi.e. Stenotrophomonas maltophiliaandProvidencia alcalifacienswere obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.


2011 ◽  
Vol 694 ◽  
pp. 554-558 ◽  
Author(s):  
Xiao Xia Zhao ◽  
Yan Wang ◽  
Zhu Qing Shi ◽  
Cai Mei Fan

The BiOBr catalyst prepared by the hydrolysis method was investigated with the X-ray diffractometry(XRD) and scanning electron microscope (SEM). The results show that the catalyst was the tetragonal primitive crystal structure and composed of homogeneous particles of fine ferrite plates. At the same time, the photocatalytic activity of BiOBr catalyst was evaluated by methylene orange (MO) in aqueous solution illuminated by Xenon lamp, and the degradation process parameters, such as initial concentration of MO, initial pH value and amount of BiOBr catalyst were discussed to the degradation rate of the MO. Under the following experimental conditions of C0=10mg/L, pH=8, m(BiOBr)=1.0g/L, MO can be entirely degraded after 2.5 hours.


2013 ◽  
Vol 739 ◽  
pp. 349-354 ◽  
Author(s):  
Xiong Zhi Zheng ◽  
Wei Ai Zeng ◽  
Song Yi Zhao ◽  
Yan Ning Huang ◽  
Qing Ming Zhou

In order to study the degradation of herbicide----Quinclorac using microorganism, separate and screen the degrading bacteria CSUFTM62 from soil, this paper researched the degradation effect of bacterial strain on the Quinclorac under different situations, including different increments, different temperatures, different concentrations of pesticide, different pH, and different additive amount of nutrients. The results show that the optimal degradation temperature is 30 ° C; the optimum pH is 7; the degradation rate of Quinclorac reaches its maximum when the concentration is 50mg / L. Adding yeast extract could increase the amount of strain growth but never affect its degradation effects on Quinclorac; combined with the morphological characteristics, the strains CSUFTM62 is identified as the Stenotrophomonas maltophilia by measuring the 16S sequence.


2019 ◽  
Vol 79 (12) ◽  
pp. 2279-2288 ◽  
Author(s):  
Zhen-Zhu Sun ◽  
Zhong-Hai Liu ◽  
Le Han ◽  
Dong-Ling Qin ◽  
Gang Yang ◽  
...  

Abstract A new type of iron-copper-carbon (Fe-Cu-C) ternary micro-electrolysis filler was prepared with a certain proportion of iron powder, activated carbon, bentonite, copper powder, etc. The effect of the new type of micro-electrolysis filler on the simulated methyl orange dye wastewater was studied. The effects of various operational parameters, such as reaction time, initial pH value, aeration rate, filler dose and reaction temperature, on the degradation rate of methyl orange were studied to determine the optimum treatment conditions, and the micro-electrolysis filler was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experimental results show that the degradation rate of 220 mL of simulated dye wastewater with a concentration of 100 mg/L reached 93.41% ± 2.94% after 60 mL/min of aeration, with an initial pH = 2, a dose of 45 g and 125 minutes of reaction at room temperature. The new micro-electrolysis filler has a high degradation rate for methyl orange solution, which is attributed to the iron and activated carbon particles sintered into an integrated structure, which makes the iron and carbon difficult to separate and affects the galvanic cell reaction. The addition of copper also greatly increases the transmission efficiency of electrons, which promotes the reaction. In addition, the surface iron is consumed, the adjacent carbon is stripped layer by layer, and the new micro-electrolytic filler does not easily passivate and agglomerate during its use.


2013 ◽  
Vol 664 ◽  
pp. 458-462 ◽  
Author(s):  
Xiu Juan Yu ◽  
Tian Yi Sun

The degradation of phenol was demonstrate with a novel two-layer type cathode (TTC). For the fabrication of TTC, chitosan was firstly deposited on foam nickel, then one piece of the resulting foam-Ni film and one piece of nanographite(Nano-G) composite film were fasten to obtain the two-layer type nano-G︱foam-Ni cathode. The electrolysis phenol was conducted by self-made cathode and the Ti/IrO2/RuO2 anode in the diaphragm cell. The results showed that in the diaphragm electrolysis system with the aeration conditions, the degradation rate of phenol reached 97.15% under 120min’s electrolysis, when current density was 39 mA/cm2, initial pH value was 12 and electrolyte concentration was 0.1 mol/L. This two-layer type cathode could be reused without catalytic activity decrease, suggesting its potential application in the wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document