Ultrasonic Welding Performance Analysis of Wood-Flour/PP Composites

2011 ◽  
Vol 183-185 ◽  
pp. 2288-2292
Author(s):  
Hui Zhao ◽  
Yi Long Zhou ◽  
Hong Yuan Zhu ◽  
Qing Wen Wang

In order to analyze the possibility of ultrasonic welding of wood-plastic composites, wood-flour(WF)/ polypropylene(PP) composite was ultrasonic welded, which contained 60%WF, 36%PP and 4% maleic anhydride grafted PP. The ultrasonic welding performance was evaluated by tensile tests and scanning electronic microscopy(SEM). The triangle energy direct stick was used in the ultrasonic welding. The results showed that WF/PP composite was successfully ultrasonic welded directly, while in the presence of energy direct stick, the strength of the welded joint was even better than the composite itself. It was concluded that the ultrasonic welding was suitable to WF/PP composites.

2012 ◽  
Vol 601 ◽  
pp. 46-49
Author(s):  
Hui Zhao ◽  
Yi Long Zhou ◽  
Hong Yuan Zhu ◽  
Sheng Yuan Zhang

Ultrasonic welding technology is applied to the connection of T-type wood-plastic composites components to study its performance. The wood-plastic composite materials are made up of 60% wood-flour (WF), 36% polypropylene (PP) and 4% maleic anhydride grafted PP (MAPP). Tensile strength of the welded joint, which oscillation time is 4 seconds, is analyzed based on experimental data. Welded joint is observed by scanning electron microscope and its connection status is analyzed. Experiment results show that ultrasonic welding technology can be applied to T-type wood-plastic composites component, which has enough tensile strength.


2012 ◽  
Vol 549 ◽  
pp. 597-600
Author(s):  
Zhong Biao Man ◽  
Yue Hui Chen ◽  
Miao Yang

The ultrasonic dispersion method and mechanical blending method were used to modify the calcium sulphate whisker (CSW). Modified CSW were characterized with scanning electronic microscopy (SEM). The different modified calcium sulphate whisker (CSW)/natural rubber (NR) composites have been prepared respectively, and then the properties of the composites were studied. The results showed that the effect of CSW modified by the ultrasonic dispersion method was better than mechanical blending method, and the CSW/NR composites modified by the ultrasonic dispersion method had the optimum properties.


2011 ◽  
Vol 311-313 ◽  
pp. 72-75
Author(s):  
Ji Wu Li ◽  
Dong Feng Zhu ◽  
Yong Gui Wu

In this study, wood plastic composites (WPC) material were fabricated with wood flour and polyvinyl chloride (PVC). To improve the interfacial compatibility between the wood flour and the PVC, silane method (SM) and tianate method(TM) were used to treat the wood flour, maleic anhydride copolymerized PVC with dicumyl peroxide. The effects of wood flour content, surface treatment on the mechanical properties of WPC materials were investigated. Fracture surfaces of tests specimens were analysis by SEM. Test results indicate that WPC material with wood flour treated by SM or TM together with PVC copolymerized showed good mechanical properties.


The article is devoted to the actual problem of assigning optimal parameters for connecting steel plates on cover plates with angular welds that are widely used in construction practice. The article presents the results of a comprehensive study of operation of a welded assembly of the plates connection on cover plates. An algorithm is proposed for determining the optimal parameters of a welded joint with fillet welds on the cover plates, which makes it possible to obtain a strength balanced connection. The results of full-scale tensile tests of models were presented. These results confirmed the correctness of the assumed design assumptions, and made it possible to obtain a form of destruction, not characteristic and not described in the normative literature, expressed by cutting the main elements along the length of the overlap in the joint. The possibility of such a form of destruction was confirmed by the results of numerical research in a nonlinear formulation. The optimal parameters of the nodal welded joint determined by engineering calculation are confirmed by experimental studies, as well as by the results of numerical experiments on models of calculation schemes, taking into account the physical nonlinearity of the material operation. The obtained dependence for determining the bearing capacity of the joint by the cut-off mechanism and the expression for limiting the overlap length of the cover plates will make it possible to predict the nature of the fracture and design equally strong joints.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 355
Author(s):  
Marco A. L. Hernandez-Rodriguez ◽  
Diego E. Lozano ◽  
Gabriela M. Martinez-Cazares ◽  
Yaneth Bedolla-Gil

The present study evaluates the effect of boron additions on the tribological performance of CoCrMo alloys. The alloys were prepared with boron ranging from 0.06 to 1 wt%. The materials were characterized using metallographic techniques, scanning electronic microscopy, and roughness and hardness tests. Tribological evaluation was made by means of ball-on-disc tests for sliding distances of 4, 8 and 12 km. The samples were in the as-cast condition and after a heat treatment at 1200 °C for 1 h, finished by water quenching. The results showed that wear resistance was influenced by the microstructure and the number of secondary phases. The volume loss decreased as the boron content increased. Due to hard phases, abrasion wear was observed. Delamination fatigue was also detected after long sliding distances. Both wear mechanisms diminished in higher boron content alloys.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 236
Author(s):  
Wanyu Liu ◽  
Yue Li ◽  
Shunmin Yi ◽  
Limin Wang ◽  
Haigang Wang ◽  
...  

To expand the use of wood plastic composites in the structural and engineering constructions applications, continuous aramid fiber (CAF) with nondestructive modification was incorporated as reinforcement material into wood-flour and high-density-polyethylene composites (WPC) by extrusion method with a special die. CAF was treated with dopamine (DPA), vinyl triethoxysilane (VTES), and DPA/VTES, respectively. The effects of these modifications on compatibility between CAF and WPCs and the properties of the resulting composites were explored. The results showed that compared with the original CAF, the adhesion strength of DPA and VTES combined modified CAF and WPCs increased by 143%. Meanwhile, compared with pure WPCs, CAF after modification increased the tensile strength, tensile modulus, and impact strength of the resulting composites by 198, 92, and 283%, respectively.


2017 ◽  
Vol 9 (4) ◽  
pp. 47 ◽  
Author(s):  
Atul M. Kadam ◽  
Shitalkumar S. Patil

Objective: The purpose of current study was to improve physicochemical properties such as micrometric, compressibility and solubility of linezolid (LNZ) by preparing crystallo-co-agglomerates (CCA) in the presence of polymer for the enhancement of overall physicochemical performance.Methods: The process of agglomeration involves the use of dichloromethane (DCM) as a good solvent and chloroform as bridging liquid were used to prepare agglomerates. Agglomerates were characterised in the solid state using several techniques such as Scanning electronic microscopy(SEM), Fourier transformation infrared spectroscopy (FTIR), X-ray powder diffraction analysis (XRPD) The agglomerates obtained were evaluated for micrometric, mechanical, deformation, compressibility and drug release properties.Results: It was found that micrometric properties and dissolution characteristics of agglomerates were significantly improved than that of pure linezolid. Solubility was found to be increased than pure linezolid. The solubility of crystallo co-agglomerates was found an increase in 5 fold 3 fold and 3.7 fold for PVPK30 (0.5%), PVPK30 (0.25%) and PVPK30 (0.75%) respectively. The angle of repose for all batches was found between 22 ° to 30 °Carrs index was between 12.27±0.6 to 18.73±0.4 and Hausners ratio Near to 1, indicated good flow ability of agglomerates. The time required for drug release over a period of 60 min, is as LA1>LA2>LA3. LA3 shows fast drug release than LA1 and LA2, due to solubilization of drug due to more concentration of PVPK30 and less concentration of talc.Conclusion: Based on the above results, it was revealed that CCA of linezolid prepared with DCM and HPMC (Hydroxypropyl methyl cellulose)/PEG (Polyethylene glycol)/PVP (Polyvinylpyrrolidone) K30 exhibited improved micrometric properties, compressibility and in addition to improving solubility and dissolution rate.


2007 ◽  
Vol 39 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Z. Andjic ◽  
M. Korac ◽  
Z. Kamberovic ◽  
A. Vujovic ◽  
M. Tasic

In this paper synthesis of a composite based on Cu-Al2O3 by a thermo-chemical method is shown along with a comparative analysis of the properties of the obtained nanocomposite sintered samples, which are characterized by a good combination of electric-mechanical properties, suitable for work at elevated temperatures. Ultra fine and nanocrystal powder Cu-Al2O3 is obtained by a chemical method, starting from water solutions of nitrates up to achieving the requested composition with 3 and 5% of Al2O3. Synthesis of composite powders has been developed through several stages: drying by spraying, oxidation of the obtained powder of precursor and then reduction by hydrogen until the final composition of nanocomposite powder is achieved. After characterization of the obtained powders, which comprised examination by the Scanning Electronic Microscopy (SEM) method and X-ray-structure analysis (RDA), the powders were compacted with compacting pressure of 500 MPa. Sintering of the obtained samples was performed in the hydrogen atmosphere in isothermal conditions at temperatures of 800 and 900oC for 30, 60, 90 and 120 minutes. Characterization of the obtained Cu-Al2O3 of the nanocomposite sintered system comprised examination of microstructure by the Scanning Electronic Microscopy (SEM), as well as examining of electric mechanical properties. The obtained results show a homogenous distribution of dispersoides in the structure, as well as good mechanical and electric properties. .


Sign in / Sign up

Export Citation Format

Share Document