An Image-Based Visual Servoing for Manipulator

2011 ◽  
Vol 186 ◽  
pp. 277-280
Author(s):  
Shi Xiang Tian ◽  
Sheng Ze Wang

In this paper, an image-based controller for tracking control of robot manipulators using a single camera is proposed. The proposed controller has robustness to parametric uncertainties of the robot manipulator and compensation for uncertainties included in the image Jacobian. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulation experiments on a 3-link robot manipulator with three degree of freedom.

Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jawhar Ghommam ◽  
Luis F. Luque-Vega ◽  
Maarouf Saad

In this paper, group formation control with collision avoidance is investigated for heterogeneous multiquadrotor vehicles. Specifically, the distance-based formation and tracking control problem are addressed in the framework of leader-follower architecture. In this scheme, the leader is assigned the task of intercepting a target whose velocity is unknown, while the follower quadrotors are arranged to set up a predefined rigid formation pattern, ensuring simultaneously interagent collision avoidance and relative localization. The adopted strategy for the control design consists in decoupling the quadrotor dynamics in a cascaded structure to handle its underactuated property. Furthermore, by imposing constraints on the orientation angles, the follower will never be overturned. Rigorous stability analysis is presented to prove the stability of the entire closed-loop system. Numerical simulation results are presented to validate the proposed control strategy.


Author(s):  
María del Carmen Rodríguez-Liñán ◽  
Marco Mendoza ◽  
Isela Bonilla ◽  
César A. Chávez-Olivares

AbstractA saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces.The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Chuanjing Hou ◽  
Lisheng Hu ◽  
Yingwei Zhang

An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.


1993 ◽  
Vol 115 (3) ◽  
pp. 419-426 ◽  
Author(s):  
Y. Strassberg ◽  
A. A. Goldenberg ◽  
J. K. Mills

In this paper the stability of a control scheme for bilateral master-slave teleoperation is investigated. Given the nominal models of the master and slave dynamics, and using an approximate feedback linearization control, based on the earlier work of Spong and Vidyasagar, 1987, a robust closed-loop system (position and force) can be obtained with a multiloop version of the small gain theorem. It is shown that stable bilateral teleoperating systems can be achieved under the assumption that the deviation of the models from the actual systems satisfies certain norm inequalities. We also show that, using the proposed scheme, the tracking error (position/velocity and force/torque) is bounded and it can be made arbitrarily small. The control scheme is illustrated using the simulation of a three-degree-of-freedom master-slave teleoperator (three-degree-of-freedom master and three-degree-of-freedom slave).


1987 ◽  
Vol 109 (4) ◽  
pp. 320-327 ◽  
Author(s):  
C. K. Kao ◽  
A. Sinha ◽  
A. K. Mahalanabis

A digital state feedback control algorithm has been developed to obtain the near-minimum-time trajectory for the end-effector of a robot manipulator. In this algorithm, the poles of the linearized closed loop system are judiciously placed in the Z-plane to permit near-minimum-time response without violating the constraints on the actuator torques. The validity of this algorithm has been established using numerical simulations. A three-link manipulator is chosen for this purpose and the results are discussed for three different combinations of initial and final states.


2014 ◽  
Vol 11 (2) ◽  
pp. 14-21
Author(s):  
R. Mishkov ◽  
V. Petrov

Abstract The paper is dedicated to the derivation of a unified approach for nonlinear adaptive closed loop system design with nonlinear adaptive state and parameter observers combined with tuning functions-based nonlinear adaptive control for trajectory tracking. The proposed approach guarantees asymptotic stability of the closed loop nonlinear adaptive system with respect to the tracking and state estimation errors and Lyapunov stability of the parameter estimator. The advantages of the approach are the lack of over-parametrization, resulting in a minimal number of estimator equations and the preservation of the overdamped performance specifications of the closed loop nonlinear adaptive system in its whole range of operation. The application of the approach to a permanent magnet synchronous motor driven inverted pendulum concludes with simulation of the closed loop nonlinear adaptive system time responses.


Author(s):  
Shubo Yang ◽  
Xi Wang

Limit protection, which frequently exists as an auxiliary part in control systems, is not the primary motive of control but is a necessary guarantee of safety. As in the case of aircraft engine control, the main objective is to provide the desired thrust based on the position of the throttle; nevertheless, limit protection is indispensable to keep the engine operating within limits. There are plenty of candidates that can be applied to design the regulators for limit protection. PID control with gain-scheduling technique has been used for decades in the aerospace industry. This classic approach suggests linearizing the original nonlinear model at different power-level points, developing PID controllers correspondingly, and then scheduling the linear time-invariant (LTI) controllers according to system states. Sliding mode control (SMC) is well-known with mature theories and numerous successful applications. With the one-sided convergence property, SMC is especially suitable for limit protection tasks. In the case of aircraft engine control, SMC regulators have been developed to supplant traditional linear regulators, where SMC can strictly keep relevant outputs within their limits and improve the control performance. In aircraft engine control field, we all know that the plant is a nonlinear system. However, the present design of the sliding controller is carried out with linear models, which severely restricts the valid scope of the controller. Even if the gain scheduling technique is adopted, the stability of the whole systems cannot be theoretically proved. Research of linear parameter varying (LPV) system throws light on a class of nonlinear control problems. In present works, we propose a controller design method based on the LPV model to solve the engines control problem and achieve considerable effectiveness. In this paper, we discuss the design of a sliding controller for limit protection task of aircraft engines, the plant of which is described as an LPV system instead of LTI models. We define the sliding surface as tracking errors and, with the aid of vertex property, present the stability analysis of the closed-loop system on the sliding surface. An SMC law is designed to guarantee that the closed-loop system is globally attracted to the sliding surface. Hot day (ISA+30° C) takeoff simulations based on a reliable turbofan model are presented, which test the proposed method for temperature protection and verify its stability and effectiveness.


2019 ◽  
Vol 16 (1) ◽  
pp. 172988141881995
Author(s):  
Francisco G Salas ◽  
Jorge Orrante-Sakanassi ◽  
Raymundo Juarez-del-Toro ◽  
Ricardo P Parada

Parallel robots are nowadays used in many high-precision tasks. The dynamics of parallel robots is naturally more complex than the dynamics of serial robots, due to their kinematic structure composed by closed chains. In addition, their current high-precision applications demand the innovation of more effective and robust motion controllers. This has motivated researchers to propose novel and more robust controllers that can perform the motion control tasks of these manipulators. In this article, a two-loop proportional–proportional integral controller for trajectory tracking control of parallel robots is proposed. In the proposed scheme, the gains of the proportional integral control loop are constant, while the gains of the proportional control loop are online tuned by a novel self-organizing fuzzy algorithm. This algorithm generates a performance index of the overall controller based on the past and the current tracking error. Such a performance index is then used to modify some parameters of fuzzy membership functions, which are part of a fuzzy inference engine. This fuzzy engine receives, in turn, the tracking error as input and produces an increment (positive or negative) to the current gain. The stability analysis of the closed-loop system of the proposed controller applied to the model of a parallel manipulator is carried on, which results in the uniform ultimate boundedness of the solutions of the closed-loop system. Moreover, the stability analysis developed for proportional–proportional integral variable gains schemes is valid not only when using a self-organizing fuzzy algorithm for gain-tuning but also with other gain-tuning algorithms, only providing that the produced gains meet the criterion for boundedness of the solutions. Furthermore, the superior performance of the proposed controller is validated by numerical simulations of its application to the model of a planar three-degree-of-freedom parallel robot. The results of numerical simulations of a proportional integral derivative controller and a fuzzy-tuned proportional derivative controller applied to the model of the robot are also obtained for comparison purposes.


2014 ◽  
Vol 573 ◽  
pp. 328-333
Author(s):  
R. Ramya ◽  
K. Selvi ◽  
M. Tamilvanan

This paper deals with the design and evaluation of robust excitation controller for a single-machine infinite-bus power system. The design of the regulator guarantees the stability of the closed loop system and ensures the output voltage is maintained within an acceptable threshold. In addition, it damps out local mode oscillations for small signal disturbances. The designed robust controller is also analyzed under change in step input and disturbance, which limits the heavy oscillations on the speed ω and voltage. Glover-McFarlane loop shaping algorithm is applied in designing the robust excitation controller. Two different techniques such as Optimal control and mixed sensitivity approach is used in this paper. The performance of the AVR was analyzed and compared with IEEE type2 Exciter.


Sign in / Sign up

Export Citation Format

Share Document