A Welding Method for Carbon Nanotubes to Metal

2011 ◽  
Vol 189-193 ◽  
pp. 3503-3506
Author(s):  
Jian Wu Zhang ◽  
Zhen Luo ◽  
Ya Li Li ◽  
Jing Dong Zhu

A simple ultrasonic welding method was employed to bond the carbon nanotubes and metal electrodes, at the same time, macro-body carbon nanotubes was tried in the experimental. By the welding head exert suitable pressure on carbon nanotubes bridge on electrodes with frequency of 60 kHz and power of 1.8w, contact would be achieved between these, moreover, the image of SEM show that the bonding was tightly.

2021 ◽  
Vol 48 (8) ◽  
pp. 0802023
Author(s):  
梅欢欢 Mei Huanhuan ◽  
崔健磊 Cui Jianlei ◽  
程杨 Cheng Yang ◽  
何小桥 He Xiaoqiao ◽  
梅雪松 Mei Xuesong

ACS Nano ◽  
2020 ◽  
Vol 14 (5) ◽  
pp. 5659-5667
Author(s):  
Min-gu Kim ◽  
Byeongyong Lee ◽  
Mochen Li ◽  
Suguru Noda ◽  
Choongsoon Kim ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 476 ◽  
Author(s):  
Jianlei Cui ◽  
Yang Cheng ◽  
Jianwei Zhang ◽  
Huanhuan Mei ◽  
Xuewen Wang

Carbon nanotubes (CNTs) have excellent performance, which means that they could be better electrical conductors. However, the problem of the connection of CNTs to electrodes limits their application. Particularly, improving connection efficiency while ensuring the quality of the connection is a big challenge, because it is difficult to form Ohmic contact between CNTs and electrodes. To address this issue, we propose the use of a femtosecond laser to irradiate the contact surface between the CNTs and the electrodes to obtain a good connection quality and electrical performance. At the same time, since the laser-induced connection acts on all the contact surfaces in the irradiation area, the connection efficiency can be improved, which provides a new idea for the large-scale preparation of the connection.


2010 ◽  
Vol 160-162 ◽  
pp. 737-742 ◽  
Author(s):  
J.W. Zhang ◽  
Zhen Luo ◽  
Y.L. Li ◽  
J.D. Zhu ◽  
J. Hao

A simple and reliable welding method was developed to weld carbon nanotubes with the power supply here. The carbon nanotubes were synthesized chemical vapor deposition method and Multi-walled carbon nanotubes was uesd here. Firstly, apply less than 5 V voltages between carbon nanotubes when they were in close proximity under direct view of optical microscope. Then, let carbon nanotube contact with each other and increase the external voltage to 7–8V until carbon nanotube was attached to the end of the other, the two carbon nanotube join into a carbon nanotube. Furthermore, some experiments were implemented to analyze the reliability, the images of the weld joint and the weld strength all indicted this method were reliable.


2004 ◽  
Vol 858 ◽  
Author(s):  
Yongqiang Xue

ABSTRACTWe present an atomistic self-consistent study of the electronic and transport properties of semiconducting carbon nanotubes in contact with metal electrodes at different contact geometries. We analyze the Schottky barrier effect at the metal-nanotube interface by examining the electrostatics, the band line up and the conductance of the metal-nanotube wire-metal junction as a function of the nanotube channel length, which leads to an effective decoupling of interface and bulk effects in electron transport through nanotube junction devices.


2013 ◽  
Vol 683 ◽  
pp. 238-241
Author(s):  
Ki Bong Han ◽  
Yong Ho Choi

Carbon nanotube has attracted great research attentions due to its outstanding electrical, physical, mechanical, chemical properties. Based on its excellent properties, the carbon nanotube is promising nanoscale material for novel electrical, mechanical, chemical, and biological devices and sensors. However, it is very difficult to control the structure of carbon nanotube during synthesis. A carbon nanotubes film has 3 dimensional structures of interwoven carbon nanotubes as well as unique properties such as transparency, flexibility and good electrical conductivity. More importantly, the properties of carbon nanotubes are ensemble averaged in this formation. In this research, we study the contact resistance between carbon nanotubes film and metal electrode. For most of electrical devices using carbon nanotubes film, it is necessary to have metal electrodes on the film for current path. A resistance at the contact lowers the electrical efficiencies of the devices. Therefore, it is important to measure and characterize the contact resistance and lower it for better efficiencies. The device demonstrated in this study using classical technique for metal contacts provides relatively reliable contact resistance measurements for carbon nanotubes film applications.


Sign in / Sign up

Export Citation Format

Share Document