Corrosion Resistance of Al2O3-ZrO2 Composite Coating by Microarc Oxidation on 2A12 Aluminum Alloy

2011 ◽  
Vol 189-193 ◽  
pp. 672-675
Author(s):  
Yu Hai Li ◽  
Yan Zhao ◽  
Bao Yi Li

The Al2O3-ZrO2 composite ceramic coatings were prepared on 2A12 aluminum alloy by Microarc oxidation in the mixed electrolyte of 40g/L Na2SiO3 and 8g/L Na2WO4 solution containing different ZrO2 content particles. The thickness of the coatings was measured by an eddy current thickness meter. Microstructure and phase composition were analyzed by scanning election microscopy (SEM) and X-Ray diffraction (XRD), respectively. The experimental results show that ZrO2 in electrolyte can promote coatings growth; Al2O3-ZrO2 composite ceramic coatings consist of α-Al2O3, t-ZrO2, m-ZrO2, and ZrO2 is located in island-like discharge channels and does not destroy the integrity of composite coatings; There is scarcely any erosion on the surface of Al2O3-ZrO2 composite coatings because the intermediate product Zr(OH)4 could suppress composite coating corrosion.

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744026
Author(s):  
Feng Xiao ◽  
Hui Chen ◽  
Jingguo Miao ◽  
Juan Du

Under the sodium aluminates’ system, microarc oxidation treatment was conducted on the superhard aluminum alloy 7A04 for different times. The microstructure of microarc oxidation ceramic layer was investigated by using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The influences of different oxidation times on the adhesion strength of ceramic layer and substrate, the morphology of surface and cross-section, the phase composition and the electrochemical properties were studied. The results indicated that the connection of the coating and substrate appears to be metallurgical bonding and dense ceramic layer, and the surface is in a “volcanic vent” morphology, which is composed of [Formula: see text]-Al2O3 and little [Formula: see text]-Al2O3. The corrosion resistance of ceramic layer is improved significantly in contrast with that of the substrate.


Author(s):  
Bo Xu ◽  
Yafeng He ◽  
Xiangzhi Wang ◽  
Weimin Gan

Abstract Ceramic coatings were prepared on the surface of 7050 highstrength aluminum alloy using micro-arc oxidation in an aluminate electrolyte with added graphene. To analyze the surface morphology, roughness, phase composition, and corrosion resistance, scanning electron microscopy, X-ray diffraction, X-ray photoelectron, and electrochemical measurements were used, respectively. The addition of 9 g · L-1 of graphene to the electrolyte decreased the micro-pore size of the composite coatings and improved the density. In addition, with the addition of graphene, the roughness was the lowest, and the corrosion resistance was significantly improved.


2015 ◽  
Vol 817 ◽  
pp. 421-425
Author(s):  
Kun Zhao ◽  
Wan Chang Sun ◽  
Chun Yu Miao ◽  
Hui Cai ◽  
Ju Mei Zhang ◽  
...  

Nickel matrix and Si3N4 micron particles were co-deposited on the aluminum alloy by pulse electro-deposition for high temperature performance. Meanwhile, the oxidation resistance was evaluated through the high temperature oxidation test. The phase structure, micrographs and components of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS) respectively. The results indicated that Si3N4 particles were uniformly distributed across the coating and there were no pores and cracks or other defects at the coating/substrate interface. Ni-Si3N4 composite coatings are characterized by pyramidal micro-crystallite structure. The thickness of Ni-Si3N4 composite coatings were up to 80 μm for 2h. The results also revealed that the Ni-Si3N4 composite coatings presented better oxidation resistance than the pure Ni coating and aluminum alloy at high temperature. After oxidation at 673 K for 8h, the oxidation resistance of Ni-Si3N4 composite coatings presented the improved oxidation resistance behavior compared to pure Ni and the aluminum alloy, respectively.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3190-3195 ◽  
Author(s):  
MING QI TANG ◽  
WEI PING LI ◽  
HUI CONG LIU ◽  
LI QUN ZHU

Black and gray microarc oxidation coatings have been obtained on 2A70 Aluminum alloy in phosphate electrolyte with and without titania sol, respectively. The growth process of the microarc oxidation coating in the electrolyte with titania sol was investigated. The coating was characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray. The coating thickness was measured by eddy current thickness meter. The results show that the titania sol increase the growth rate of microarc oxidation coating. In both cases the composition of coatings contain Al and O , and are mainly composed of γ- Al 2 O 3 and AlPO 4. Compared with the gray coating, large amount of Ti is found on the surface of black coating. The titania sol added in the electrolyte results in Ti in the coating, in the form of TiO and Al 2 TiO 5.


Author(s):  
Yu Zong ◽  
Renguo Song ◽  
Tianshun Hua ◽  
Siwei Cai

Abstract In this paper, ceramic coatings were prepared on the surface of 7050 high strength aluminum alloy using a micro-arc oxidation process in a silicate electrolyte combined with the rare earth element cerium or graphene. To analyze the surface morphology, roughness, phase composition, and corrosion resistance, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectrometry, and electrochemical measurements were used, respectively. It was shown that the micropore size of the composite coatings, which mainly consisted of α-Al2O3 and γ-Al2O3, decreases and the density improved with the simultaneous addition of 4 g · L-1 of CeO2 and 10 g · L-1 of graphene to the electrolyte. In addition, with the addition of CeO2 and graphene, the roughness was the lowest and the corrosion resistance was significantly improved.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhisheng Li ◽  
Zongde Liu ◽  
Yongtian Wang ◽  
Shunv Liu ◽  
Runsen Jiang ◽  
...  

Fe-based amorphous composite coating was deposited on the carbon steel substrate by arc spraying and then remelted by a plasma remelting system, in order to improve the mechanical properties of the coatings. The composition, microstructure, and properties of the composite coating were analyzed by means of the metallographic microscope, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and microhardness tester. The results showed that the amorphous composite coatings had more homogeneous and finer microstructure after the plasma remelting. The coating is metallurgically bonded with the substrate, and the hardness of the Fe-based amorphous composite coating is up to 1220 HV. The internal relationship between microhardness and microstructure has been discussed.


2014 ◽  
Vol 548-549 ◽  
pp. 72-76
Author(s):  
Cheng Hao Liang ◽  
Shu Sen Wang ◽  
Nai Bao Huang ◽  
Bo Wu

Hydroxyapatite (HAP) composite coatings with interlayer of TiO2 on Ti6Al4V alloy were prepared by microarc oxidation and electrochemical potentiostatic method. Platelet adhesion test and electrochemical behaviors of the HAP coatings were investigated in platelet-rich plasma, Ringer's solution, Tyrode's solution and human blood at 37°C. The HAP coating was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD). TiO2 coating has round ostioles on the surface with the element of O, Na, Al, Si and Ti. The HAP coating has sheet-like, column-like and batten-like crystal with the Ca/P 1.6689. The biocompatibility of HAP coating was better than the initial coating. The results indicated that the HAP coating had better characters of anticorrosion and biocompatibility.


2007 ◽  
Vol 361-363 ◽  
pp. 697-700
Author(s):  
Ying Chun Wang ◽  
Yan Min Li ◽  
Zhen Min Xu ◽  
Qi Lin Deng ◽  
Jian Guo Li ◽  
...  

Undesirable phase and microstructure formation, and poor HAP/metal bonding strength restrict the fabrication technique to obtain HAP and other calcium phosphate ceramic coatings. In this paper a bioceramic composite coating, which includes HAP andβ-Ca2P2O7, was obtained by laser cladding with pre-depositing mixed powders of CaHPO4·2H2O and CaCO3 directly on the 316L stainless steel metal substrate. The phases, microstructure and bonding feature of the bioceramic composite coating are characterized by X-ray diffraction(XRD), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS). The microstructure of the coating consists of minute granular HAP that is distributed among the overlapped club-shapedβ-Ca2P2O7. Uniform presences of Ca, P and O in bioceramic composite coating supplie necessary elements for the synthesis of HAP andβ-Ca2P2O7. Diffusions inwards of P and O into alloying layer help form the chemical metallurgical bonding and composition gradient distributions are present. a chemical metallurgical bonding was formed between the bioceramic composite coating and metal substrate.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


Author(s):  
H Chen ◽  
Z Pala ◽  
T Hussain ◽  
DG McCartney

This paper investigates the microstructure evolution of Al-TiB2 coatings prepared by cold spraying. In situ Al-TiB2 composite powders containing uniformly distributed titanium diboride (TiB2) particles with a size range of 5–100 nm in the Al matrix and Al/Al-TiB2 blended powders were used as the cold spray feedstock for coating fabrication on aluminium alloy substrates. The microstructures of the feedstock powders and as-deposited coatings were characterised using scanning electron microscopy with energy dispersive X-ray analysis and X-ray diffraction. Al/Al-TiB2 blended powder coatings, compromising closely packed powder particles, were sprayed to an approximate thickness of 500 µm. Al-TiB2 composite coatings (approximately 50 µm thick) were obtained retaining the microstructure of the composite powders being sprayed and no evidence of detrimental phase transformation was found. However, micro-cracks were found to exist in the Al-TiB2 coating due to the hardly deformable powder particles. Little or no microstrain was revealed in the as-sprayed Al-TiB2 coating, indicating that annealing may have occurred due to the localised adiabatic heating during the spraying process. It is demonstrated that it is possible to fabricate the Al-TiB2 composite coating by cold spray deposition but further improvements to eliminate coating cracking are required.


Sign in / Sign up

Export Citation Format

Share Document