Experimental Study on the Solidification/Stabilization of Textile Dyeing Sludge

2011 ◽  
Vol 197-198 ◽  
pp. 1010-1015
Author(s):  
Xun An Ning ◽  
Jian Bo Zhou ◽  
Jing Yong Liu ◽  
Zuo Yi Yang ◽  
Yu Tian ◽  
...  

Sludge from the textile dyeing industries was solidified and stabilized using cement, fly ash(PFA)and cinder as the solidifying agents, and the optimum conditions of sludge solidification/stabilization were analyzed. The mechanical property of solidified sludge block was evaluated by compressive strength test, at the same time, the chemical oxygen demand (COD) and heavy metal concentration of the leaching from the cured block were tested as well. With the dosage of cement, PFA and cinder, 0.15kg/kg, 0.02kg/kg and 0.08kg/kg respectively, and curing time was 6ds, the compressive strength of the solidified sludge block reached 330kPa.Results showed that addition of cement and cinder had good effects on the compressed strength of sludge block, cement, PFA and cinder enhanced the solidification and stabilization of organic and heavy metal in the sludge. Under the above conditions, COD of the leaching from the sludge solidification block was 488mg/L, and the heavy metal concentrations had reached the related national standards. After 6ds of curing time, water ratio of the solidified block was maintained at 40%~45%, which met the prescribed standards of landfill.

2010 ◽  
Vol 156-157 ◽  
pp. 84-89
Author(s):  
Xu Nan Ning ◽  
Shi Wen Li ◽  
Jing Yong Liu ◽  
Zuo Yi Yang ◽  
Zhu Ying

For better harmlessly treatment of papermaking sludge, a new technology for solidifying and stabling of sludge was studied. Papermaking sludge was solidified and stabilized by the solidifying agents including cement, powder fly ash (PFA) and cinder. The mechanical properties of solidified sludge block were evaluated by compressive strength, chemical oxygen demand (COD) and heavy metals concentration in the leachate from the solidified block were tested as well. When the solidifying agents has the following composition (cement 0.12kg/kg, PFA 0.02kg/kg and cinder 0.10kg/kg respectively), and the curing time was 6ds, the compressive strength of the solidified sludge blocks reached 360kPa. The results showed that cement and cinder were all positive in the compressed strength of sludge block. If they were mixed with PFA together, they could enhanced the solidification of organic and heavy metals in the sludge. Under this conditions, the COD in leachate from the solidified block was 115.7 mg/L, and the heavy metal concentration had reached the related national standards, after 6ds of curing time, water ratio of the solidified block kept from 35% to 40%, which met the prescribed standards of landfill.


2016 ◽  
Vol 5 (10) ◽  
pp. 4933
Author(s):  
Sabia Sultana ◽  
A. K. M. Nur Alam Siddiki ◽  
Md. Rokonujjaman ◽  
M. Niamul Naser ◽  
Abdus Salam ◽  
...  

The heavy metal concentration (e.g., Mn, Zn, Pb and Ni) were determined in soft tissues and shells of freshwater mussels (Lamellidens marginalis) at the various sites of Dhanmondi lake, Dhaka, Bangladesh between the period April, 2010 and March 2011. The heavy metal concentrations in shells and soft tissues of freshwater mussels were tended to vary significantly among sampling points and seasons in Dhanmondi Lake. Distribution of heavy metals in shell and soft tissue of Lamellidens marginalis followed the order Mn>Zn>Pb>Ni, respectively. According to the t-test, level of manganese, zinc and lead under investigation between shell and tissue showed statistically significant differences [Mn: t=-11.387; df=16; P=0.000; Zn: t=-2.590; df=16; P=0.020 and Pb: t=-2.8679; df=16; P=0.011].


2020 ◽  
Vol 21 (2) ◽  
pp. 98-109
Author(s):  
Witriani Marvinatur Ihsan ◽  
Ratnawulan Ratnawulan

In the South Coastal Forest area, West Sumatra, a luminous mushroom with the species Neonothopanus Sp. This research was conducted with the aim of seeing the effect of heavy metals on the bioluminescence reaction of luminous mushrooms. Starting from the effect of heavy metal concentrations on the intensity and inhibition coefficient of luminous mushroom biolumination. From the measurement results, the maximum intensity value of luminous mushrooms is 499.6 au occurring at a wavelength of 505 nm. At a wavelength of 505 nm, visible light is produced in green. The results obtained are in accordance with observations, because the light emitted by the glowing mushroom is green. If the concentration of heavy metals is greater, the intensity of the bioluminescent fungus (Neonothopanus sp) will decrease. The type of heavy metal affects the intensity of the fungus biolumination. The greatest decrease in intensity occurred in copper (Cu) and iron (Fe), zinc (Zn) and lead (Pb). If the heavy metal concentration is greater, the inhibition coefficient will be smaller. The greatest inhibition coefficient due to the presence of heavy metals occurs in copper (Cu) then iron (Fe), zinc (Zn) and the smallest is lead (Pb).


2018 ◽  
Vol 3 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Mohammad Kazem Souri ◽  
Neda Alipanahi ◽  
Mansoure Hatamian ◽  
Mohammad Ahmadi ◽  
Tsehaye Tesfamariam

Abstract Heavy metal accumulation in vegetable tissues often poses a great risk for human health. In the present study, accumulation of heavy metal in green leafy vegetable crops of coriander, garden cress, lettuce and spinach were evaluated under waste water irrigation in fields located in Kahrizak, on the southern edge of the metropolitan city of Tehran, Iran. Atomic absorption spectrophotometery was used for determination of heavy metal concentrations in leaf tissue. The results showed that heavy metal concentrations in soil and irrigation water were significantly high than allowable levels. Analysis of plant leaf tissue showed that spinach and garden cress accumulated higher concentrations of heavy metals compared to coriander and lettuce plants. Central leaves of lettuce showed the lowest heavy metal concentration compared to outer leaves or leaves of other vegetable crops, and can be the safer product for fresh consumption. The results indicate that the vegetables produced in the region are not suitable for fresh consumption and the agricultural activities should change towards ornamental or industrial crops production.


2019 ◽  
Vol 21 (1) ◽  
pp. 69-82
Author(s):  
Iyabode Olusola Taiwo ◽  
Olaniyi Alaba Olopade ◽  
Nathanael Akinsafe Bamidele

Abstract This research was undertaken to find out the levels of five heavy metals (Cu, Fe, Mn, Pb, and Zn) in the muscles of eight fish species from Epe Lagoon. The levels of heavy metals were determined by atomic absorption spectrophotometry after digestion of the samples using Kjldahl heating digester. The heavy metal concentrations among the fish species were statistically dissimilar (P < 0.5). The heavy metals of Pb, Fe, and Mn were above the FAO/WHO agreeable limits for human consumption.


2021 ◽  
Author(s):  
Arturo Aguirre Gómez ◽  
Laura Virginia Nuñez Balderas ◽  
Claudia Hidalgo Moreno ◽  
Jorge Dionisio Etchevers Barra

The chapter is meant to expose how a sound methodology can be instrumented to both, remediate acidic metal polluted mine wastes, taking advantage of the neutralizing power and high metal sorption affinity of biochar, and to utilize pyrolyzed material derived from high-rate growth plants (water hyacinth, Eichhornia crassipes Mart, and Eucalyptus, Eucalyptus globulus Labill), which have become of ecological relevance due to their unwanted proliferation over specific terrestrial, lacustrine or riverine environments. In addition, the proposal considers not only neutralizing the mine tailings and abating the toxic levels of specific heavy metals like Pb, Cd, Cu, Zn, etc., to fulfill the international and national standards and norms, but to conveniently combine biochar with widely used soil amendments to pass widely recognized biological tests of growth using heavy metal-sensitive plants. The approach addresses firstly: a) characterizing physiochemically mine tailings and biochar, in terms of their properties (metal speciation and contents, potential acidity and neutralization potential, chemical oxygen demand, heavy metal-biochar sorption-complexing affinities, among others), and secondly; b) creating a” fertile environment” by reconditioning, agriculturally, the heavy metal-polluted acidic mine waste to allow native vegetation, or other reforesting species, to regrow on the reclaimed site, based on the bioassay tests performances.


Author(s):  
Louis Boateng

This research was conducted in the Akantansu stream of Tutuka in Kenyasi in the Brong Ahafo Region of Ghana in the months of October and November 2010 and January 2011. The major objectives of the study were to measure levels of pH, BOD (biochemical oxygen demand), lead, chromium, and arsenic in the Akantansu stream of Tutuka and to find ways that the community could ensure safe water use. To achieve the objectives of the study, sampling was done over a period of three months and data was collected and analyzed into graphs and ANOVA tables. The research revealed that the levels of arsenic and BOD were high as compared to the standards of WHO and EPA. If the people of Tutuka continue to use the stream, they may experience negative health effects (e.g., nausea, vomiting, diarrhea, etc.). The level of pH, chromium and lead was acceptable as compared to the standard of WHO and EPA.


2016 ◽  
Vol 857 ◽  
pp. 352-357
Author(s):  
Aeslina binti Abdul Kadir ◽  
Nur Athirah Ideris ◽  
Ahmad Shayuti Abdul Rahim

Mosaic sludge is sewerage from mosaic industrial activities such as cutting, polishing and grinding. This sludge mostly will be disposed directly to landfill and some of it was discharged in drainage system without proper treatment. Therefore, in this study, mosaic sludge from the mosaic industry were reused and incorporated into fired clay brick in order to provide alternative disposal method, producing adequate quality of brick as well as minimizing the heavy metal leachability to the environment. First, X-Ray Fluorescence (XRF) was conducted to determine the heavy metal concentration from two types of mosaic sludge. The results indicate that the highest element concentration in mosaic sludge (BS and PS) shows that Barium is the highest with 3253ppm and 3260ppm. On the raw sludge, the lowest obtained in BS and PS is Cesium with 14ppm and 17ppm. SPLP and TCLP also conducted in this study and the results show that, even though the element such as ferum (Fe) and cadmium (Cd) was not detected in XRF but in SPLP and TCLP, it shows that these two elements exist in clay, BS and PS with low concentration. In term of properties, compressive strength was conducted by incorporating 0%, 1%, 5%, 10%, 20% and 30% bodymill and polishing sludge into fired clay brick. The results show that compressive strength of BS brick was stronger than PS brick. Lastly, Static Leachate Test (SLT) was conducted to measure the long term leachability of heavy metals from different percentages of mosaic sludge brick. In SLT result, ferum (Fe) shows the highest value of heavy metal concentration among other elements. The results for control brick, BS brick and PS brick show the same pattern and far from the limit set by USEPA.


2011 ◽  
Vol 356-360 ◽  
pp. 1951-1954
Author(s):  
Yu Tian ◽  
Xu Nan Ning ◽  
Jing Yong Liu ◽  
Jian Bo Zhou ◽  
Zuo Yi Yang ◽  
...  

Sludge from tannery was solidified and stabilized by using lime, PFA and cinder as the solidifying agents,investigation of solidifying agents affect toxic heavy metals in tannery sludge and the optimum conditions of sludge solidification/stabilization were analyzed. The results showed that under the dosage of lime, PFA and cinder were 0.12kg/kg, 0.02kg/kg and 0.08kg/kg respectively, and curing time was 6 days, the compressive strength of the solidified sludge block reached 884KPa while the moisture content of the solidification block was 30.2%,which met with the standards of landfill. Compared with the untreated tannery sludge,the concentration of Cu、Pb、Zn、Ni and COD of the leaching from the sludge solidification block was reduced by 92.1%、96.7%、92.8%、88.9% and 75.9% respectively,the Cr、Cd、and Mn were undetectable.When lime and PFA ratio was 6:1, the solidified block have good synergistic solidification effects.


2021 ◽  
Vol 8 ◽  
Author(s):  
Beta Susanto Barus ◽  
Kai Chen ◽  
Minggang Cai ◽  
Rongmao Li ◽  
Huorong Chen ◽  
...  

Microplastics (MPs) and heavy metals are two major types of pollutants that interact with each other, but they are poorly understood. Polystyrene (PS) is one type of MPs that is often detected in aquatic environments. In this study, we examined the adsorption capacity and release rate of heavy metals with respect to different particle sizes of PS, heavy metals, initial heavy metal concentrations, and salinities. Virgin (new) PS with diameters of 20, 50, 130, and 250 μm was used in this study, and four heavy metals (lead, cadmium, copper, and zinc) were used. The results showed that larger PS particle sizes adsorbed more heavy metals even though it took longer to achieve equilibrium adsorption. An increase in heavy metal concentration caused the adsorption capacity (μg g–1) of PS particles to also increase, but the adsorption rate (%) decreased. Increased salinity of the heavy metal solution resulted in a slower adsorption time and a lower adsorption capacity and release rate from the surface of PS particles. Different heavy metals also had different adsorption capacities. Pb was consistently more highly adsorbed by MPs, followed by Cu, Zn, and Cd. Larger PS sizes released heavy metals faster than smaller PS sizes, and the amounts of heavy metals released were higher. The heavy metal with the highest release rate was Cd, followed by Pb, Cu, and Zn. Finally, our findings highlight the interactions between PS and heavy metals and strongly support that PS particles can act as vectors for heavy metals in aquatic systems.


Sign in / Sign up

Export Citation Format

Share Document