Deploying Impact Dynamics Simulation on Deployable Mechanism of Folding Wing with Clearance

2011 ◽  
Vol 211-212 ◽  
pp. 895-899
Author(s):  
Ming Hu ◽  
Miao Miao Zhang ◽  
Wen Hua Chen ◽  
Yong Ping Jin ◽  
Guo Ming Xu ◽  
...  

Based on the non-linear equivalent spring-damper model in the "two-state model", Impact model with hinge clearance for deployable mechanism of folding wing is set up and deploying dynamics on deployable mechanism of folding wing is simulated including impact force variation caused by the size of clearance and the clearance friction by using ADAMS software. The results show that the random continuous impact force is produced by the influence of clearance; as dimensions of the clearance increase, impact times decrease and amplitudes of impact forces are increased; System energy consumption is speeded up and to some extent times of impacts with clearance and disturbance effects of deployable mechanism is suppressed by friction in the whole deployable process.

2008 ◽  
Vol 392-394 ◽  
pp. 826-831
Author(s):  
Li Yan ◽  
J. Liu ◽  
Wei Jie Qiao

The balance of brake dish is very important for a car driving. Taking one kind of auto-equilibrium-machine of brake dish as research object, and making use of the Virtual–kind-machine technique and the ADAMS software as analysis tools, as well as with the Solid Works to set up a model, for a whole, the kinematics and dynamics of the product are analyzed in various virtual environment, the research of dynamics simulation of machine system is carried out, and various design projects are analyzed Quickly, the experiment is done, which is quite difficult to be realized by physical kind machine, after all these, an optimal design project of the system is decided. The virtual kind machine technique is applied through whole design process, thus the design of the product development becomes convenient, the development period is shortened, and the product costs are reduced so that optimal-new product can be acquired.


2012 ◽  
Vol 226-228 ◽  
pp. 685-692 ◽  
Author(s):  
Zhen Jie Qian ◽  
Ding Guo Zhang

The dynamic analysis of a flexible-link-joint robot colliding with its environments is presented in this paper. Kinematics of both rotary-joint motion and link deformation is described by 4×4 homogenous transformation matrices. Both the stretching deformation, bending deformation and the torsional deformation of the flexible links are considered. Furthermore, the flexibility and the mass of the joint are considered too. The concept of impact force potential energy is introduced, so that the generalized forces due to the impact force can be computed easily. The Lagrange dynamic equations are used to establish the complete mathematic model of the system with impact. Dynamics simulation of a spatial flexible-link-joint manipulator arm is given as an example to validate the algorithm presented in this paper. And the numerical results indicate that the flexibility of the link and joint have distinguished influence on the impact dynamics of the flexible robots.


1987 ◽  
Vol 3 (3) ◽  
pp. 264-275 ◽  
Author(s):  
Alexander Bahlsen ◽  
Benno M. Nigg

Impact forces analysis in heel-toe running is often used to examine the reduction of impact forces for different running shoes and/or running techniques. Body mass is reported to be a dominant predictor of vertical impact force peaks. However, it is not evident whether this finding is only true for the real body mass or whether it is also true for additional masses attached to the body (e.g., running with additional weight or heavy shoes). The purpose of this study was to determine the effect of additional mass on vertical impact force peaks and running style. Nineteen subjects (9 males, 10 females) with a mean mass of 74.2 kg/56.2 kg (SD = 10.0 kg and 6.0 kg) volunteered to participate in this study. Additional masses were attached to the shoe (.05 and .1 kg), the tibia (.2, .4, .6 kg), and the hip (5.9 and 10.7 kg). Force plate measurements and high-speed film data were analyzed. In this study the vertical impact force peaks, Fzi, were not affected by additional masses, the vertical active force peaks, Fza, were only affected by additional masses greater than 6 kg, and the movement was only different in the knee angle at touchdown, ϵ0, for additional masses greater than .6 kg. The results of this study did not support findings reported earlier in the literature that body mass is a dominant predictor of external vertical impact force peaks.


Author(s):  
Hervé Vicari ◽  
C.W.W. Ng ◽  
Steinar Nordal ◽  
Vikas Thakur ◽  
W.A. Roanga K. De Silva ◽  
...  

The destructive nature of debris flows is mainly caused by flow bulking from entrainment of an erodible channel bed. To arrest these flows, multiple flexible barriers are commonly installed along the predicted flow path. Despite the importance of an erodible bed, its effects are generally ignored when designing barriers. In this study, three unique experiments were carried out in a 28 m-long flume to investigate the impact of a debris flow on both single and dual flexible barriers installed in a channel with a 6 m-long erodible soil bed. Initial debris volumes of 2.5 m<sup>3</sup> and 6 m<sup>3</sup> were modelled. For the test setting adopted, a small upstream flexible barrier before the erodible bed separates the flow into several surges via overflow. The smaller surges reduce bed entrainment by 70% and impact force on the terminal barrier by 94% compared to the case without an upstream flexible barrier. However, debris overflowing the deformed flexible upstream barrier induces a centrifugal force that results in a dynamic pressure coefficient that is up to 2.2 times higher than those recommended in guidelines. This suggests that although compact upstream flexible barriers can be effective for controlling bed entrainment, they should be carefully designed to withstand higher impact forces.


2018 ◽  
Vol 4 (1) ◽  
pp. e000361 ◽  
Author(s):  
Erin R A Frizzell ◽  
Graham P Arnold ◽  
Weijie Wang ◽  
Rami J Abboud ◽  
Tim S Drew

AimTo compare the available brands of rugby headguards and evaluate their impact attenuation properties at various locations on the cranium, with regard to concussion prevention.MethodsSeven different branded headguards were fitted onto a rigid headform and drop-tested in three different positions. An accelerometer measured the linear acceleration the headform experienced on impact with the ground. Each test involved dropping the headform from a height that generated 103.8 g on average when bare, which is the closest acceleration to the upper limit of the concussion threshold of 100 g. A mean peak acceleration for each drop position was calculated and compared with the bare baseline measurement.ResultsEach headguard demonstrated a significant decrease in the mean peak acceleration from the baseline value (all p≤0.01). Overall the Canterbury Ventilator was the most effective headguard, decreasing the impact force on average by 47%. The least effective was the XBlades Elite headguard, averaging a force reduction of 27%. In five of the seven headguards, the right side of the headwear was the most effective at reducing impact force.ConclusionOverall, the results indicate that it would be beneficial to wear a headguard during rugby in order to reduce the impact forces involved in head collisions. There was also a clear difference in performance between the tested brands, establishing the Canterbury headguard as the most effective. However, only one model of headguard from each brand was tested, so further research evaluating all other models should be considered.


2016 ◽  
Vol 54 (6) ◽  
pp. 797
Author(s):  
Nguyen Thai Dung ◽  
Nguyen Duc Thuyen

The motion of the underwater projectile with cavity effect including two motions: the projectile moves in the forward direction, center of mass of the projectile rotation around its nose makes tail of the projectile impacts on the cavity wall. According to, the impact forces occur, they include the drag force at its none, the impact force at impact point. The paper studies the forces occur on during motion of the underwater cavity projectile. Added, this paper considers the effect of the length and distributive projectile to the magnitude of impact force and the drag force of the underwater cavity projectile.


1982 ◽  
Vol 11 (3) ◽  
pp. 141-147 ◽  
Author(s):  
J Mizrahi ◽  
Z Susak

The characteristics of impact forces on the legs during vertical landing of human vertical free fall in different falling conditions were studied to reveal the parameters which take part in the attenuation of these impact forces. The following parameters were investigated: body position during landing, range of flexion of the joints of the legs at impact, usage of ground-roll immediately after impact and softness of the ground. The results indicate that joint movements and muscle action play a major role in reducing peak forces during landing. This emphasizes the importance of adequate training to improve the pre-programmed non-reflex muscle action, necessary in the early phase of impact.


2014 ◽  
Vol 940 ◽  
pp. 132-135 ◽  
Author(s):  
Yi Fan Zhao ◽  
Ling Sha ◽  
Yi Zhu

Established the dynamics simulation analysis model of crane hoisting mechanism based on the theory of dynamics in Adams software, and then through the three dimensional model of lifting mechanism dynamics entities, the constraints, load, drive can be added, the motion law can be defined to simulation analysis the change of the force of wire rope, the change of displacement, velocity and acceleration of lifting weight in the lifting process. On the basis of the simulation results, it can make a great improvement for the structure of crane and provide a meaningful theoretical reference for the hoisting machinery innovation design.


Sign in / Sign up

Export Citation Format

Share Document