scholarly journals Comparison of branded rugby headguards on their effectiveness in reducing impact on the head

2018 ◽  
Vol 4 (1) ◽  
pp. e000361 ◽  
Author(s):  
Erin R A Frizzell ◽  
Graham P Arnold ◽  
Weijie Wang ◽  
Rami J Abboud ◽  
Tim S Drew

AimTo compare the available brands of rugby headguards and evaluate their impact attenuation properties at various locations on the cranium, with regard to concussion prevention.MethodsSeven different branded headguards were fitted onto a rigid headform and drop-tested in three different positions. An accelerometer measured the linear acceleration the headform experienced on impact with the ground. Each test involved dropping the headform from a height that generated 103.8 g on average when bare, which is the closest acceleration to the upper limit of the concussion threshold of 100 g. A mean peak acceleration for each drop position was calculated and compared with the bare baseline measurement.ResultsEach headguard demonstrated a significant decrease in the mean peak acceleration from the baseline value (all p≤0.01). Overall the Canterbury Ventilator was the most effective headguard, decreasing the impact force on average by 47%. The least effective was the XBlades Elite headguard, averaging a force reduction of 27%. In five of the seven headguards, the right side of the headwear was the most effective at reducing impact force.ConclusionOverall, the results indicate that it would be beneficial to wear a headguard during rugby in order to reduce the impact forces involved in head collisions. There was also a clear difference in performance between the tested brands, establishing the Canterbury headguard as the most effective. However, only one model of headguard from each brand was tested, so further research evaluating all other models should be considered.

1997 ◽  
Vol 84 (1) ◽  
pp. 267-274 ◽  
Author(s):  
M. Scharff-Olson ◽  
H. N. Williford ◽  
D. L. Blessing ◽  
R. Moses ◽  
T. Wang

The purpose of this study was to determine the effects of two bench-step exercise speeds on vertical impact forces and to explore this variable between novices and instructors. 12 women (mean age 24 yr.) randomly performed 8-min. protocols of the “basic” bench-stepping technique and a more advanced “travel” technique at 30 and 33 cycles · min.−1. Analysis showed that the faster exercise rate yielded significantly higher vertical impact forces on a reference (B-8) step height (20.3 cm). At 33 cycles · min.−1, the instructors' and novices' responses were both higher than those at 30 cycles · min.−1. The mean peak vertical impact force ranged from 1.54 times the body weight for the novice group at 30 cycles · min.−1 to 1.87 times the body weight for instructors at 33 cycles · min.−1. A comparison of the groups' force curves showed a distinctive pattern in the loading of the impact forces. Specifically, the instructors consistently produced a transitory decrement in force prior to attaining peak force. In addition, the novices exhibited nonuniform increases in the production of vertical impact force across other step heights at the faster (33 cycles · min.−1) speed. Thus, experience with bench-step exercise may afford an ability to make uniform and force-absorbing adjustments in the resultant vertical impact forces at increased speeds.


Author(s):  
Hervé Vicari ◽  
C.W.W. Ng ◽  
Steinar Nordal ◽  
Vikas Thakur ◽  
W.A. Roanga K. De Silva ◽  
...  

The destructive nature of debris flows is mainly caused by flow bulking from entrainment of an erodible channel bed. To arrest these flows, multiple flexible barriers are commonly installed along the predicted flow path. Despite the importance of an erodible bed, its effects are generally ignored when designing barriers. In this study, three unique experiments were carried out in a 28 m-long flume to investigate the impact of a debris flow on both single and dual flexible barriers installed in a channel with a 6 m-long erodible soil bed. Initial debris volumes of 2.5 m<sup>3</sup> and 6 m<sup>3</sup> were modelled. For the test setting adopted, a small upstream flexible barrier before the erodible bed separates the flow into several surges via overflow. The smaller surges reduce bed entrainment by 70% and impact force on the terminal barrier by 94% compared to the case without an upstream flexible barrier. However, debris overflowing the deformed flexible upstream barrier induces a centrifugal force that results in a dynamic pressure coefficient that is up to 2.2 times higher than those recommended in guidelines. This suggests that although compact upstream flexible barriers can be effective for controlling bed entrainment, they should be carefully designed to withstand higher impact forces.


2016 ◽  
Vol 54 (6) ◽  
pp. 797
Author(s):  
Nguyen Thai Dung ◽  
Nguyen Duc Thuyen

The motion of the underwater projectile with cavity effect including two motions: the projectile moves in the forward direction, center of mass of the projectile rotation around its nose makes tail of the projectile impacts on the cavity wall. According to, the impact forces occur, they include the drag force at its none, the impact force at impact point. The paper studies the forces occur on during motion of the underwater cavity projectile. Added, this paper considers the effect of the length and distributive projectile to the magnitude of impact force and the drag force of the underwater cavity projectile.


2019 ◽  
Vol 9 (5) ◽  
pp. 922 ◽  
Author(s):  
Ola Eriksson ◽  
Simon-Philippe Breton ◽  
Karl Nilsson ◽  
Stefan Ivanell

The impact of the Coriolis force on the long distance wake behind wind farms is investigated using Large Eddy Simulations (LES) combined with a Forced Boundary Layer (FBL) technique. When using the FBL technique any mean wind shear and turbulent fluctuations can be added with body forces. The wind shear can also include the mean wind veer due to the Coriolis force. The variation of the Coriolis force due to local deviations from the mean profile, e.g., from wakes, is not taken into account in the FBL. This can be corrected for with an extra source term in the equations, hereon defined as the Coriolis correction. For a row of 4 turbines it is shown that the inclusion of the wind veer turns the wake to the right, while including the Coriolis correction turns it to the left. When including both wind veer and Coriolis correction the impact of wind veer dominates. For an idealized farm to farm interaction case, two farms of 4 ∗ 4 turbines with 6 km in between, it can be seen that when including wind veer and the Coriolis correction a approximately 3% increase in the relative production for a full wake direction can be seen and only a slightly smaller increase can be seen when including only wind veer. The results indicate that FBL can be used for studies of long distance wakes without including a Coriolis correction but efforts need to be taken to use a wind shear with a correct mean wind veer.


Author(s):  
John W Bridge ◽  
Kaleb M Dempsey ◽  
Kayla M Danicki ◽  
Robin L Angotti ◽  
Alan K Kwiatkowski ◽  
...  

Thirty horse racing whips of four different designs were tested to measure dynamic impact force and compared using a specially designed mechanical testing device to simulate the whipping action of a jockey during racing. The whips tested included designs used in Thoroughbred horse racing in North America, which meet the design criteria established by the Association of Racing Commissioners International (ARCI) model rules, as well as the most common whip used in British horse racing. The objective of the device was to allow comparisons to be made between peak impact loads resulting from different whip designs. A high peak dynamic force on a horse’s shoulder or hind quarter may result in injuries, such as welts. The testing device contains a planar three-bar, open mechanical linkage loaded by torsion springs to model the arm motion of a jockey. The whip strikes a flat plate covered by an elastomeric pad. The energy input is replicated during the simulated impact. A single axis dynamic load cell under the loading plate and three single-turn precision potentiometers located at each joint of the three-arm mechanical system measure impact forces and relative angular positions, respectively. Force measurements are compared from the face of each whip and the edge or seam where applicable. In addition to the flap design, other physical differences between whip designs included mass, shaft length, shaft stiffness, flap cushion thickness/compression factor, flap surface area, and flap seam area. Statistically significant impact force differences were found between flap face and flap seam impact orientations, with higher impact forces delivered by the flap face. Significant differences were also found in impact forces between the three whip styles with seams.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 328 ◽  
Author(s):  
Dong Nam ◽  
Man-Il Kim ◽  
Dong Kang ◽  
Byung Kim

Recently, human and property damages have often occurred due to various reasons—such as landslides, debris flow, and other sediment-related disasters—which are also caused by regional torrential rain resulting from climate change and reckless development of mountainous areas. Debris flows mainly occur in mountainous areas near urban living communities and often cause direct damages. In general, debris flows containing soil, rock fragments, and driftwood temporarily travel down to lower parts along with a mountain torrent. However, debris flows are also often reported to stream down from the point where a slope failure or a landslide occurs in a mountain directly to its lower parts. The impact of those debris flows is one of the main factors that cause serious damage to structures. To mitigate such damage of debris flows, a quantitative assessment of the impact force is thus required. Moreover, technologies to evaluate disaster prevention facilities and structures at disaster-prone regions are needed. This study developed two models to quantitatively analyze the damages caused by debris flows on structures: Type-1 model for calculating the impact force, which reflected the flow characteristics of debris flows and the Type-2 model, which calculated the impact force based on the topographical characteristics of mountainous regions. Using RAMMS a debris flow runoff model, the impact forces assessed through Type-1 and Type-2 models were compared to check reliability. Using the assessed impact forces, the damage ratio of the structures was calculated and the amount of damage caused by debris flows on the structures was ultimately assessed. The results showed that the Type-1 model overestimated the impact force by 10% and the Type-2 model by 4% for Mt. Umyeon in Seoul, compared to the RAMMS model. In addition, the Type-1 model overestimated the impact force by 3% and Type-2 by 2% for Mt. Majeok in Chuncheon, South Korea.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 347 ◽  
Author(s):  
Seyed Mohammad Khatami ◽  
Hosein Naderpour ◽  
Rui Carneiro Barros ◽  
Anna Jakubczyk-Gałczyńska ◽  
Robert Jankowski

Structural pounding during earthquakes may cause substantial damage to colliding structures. The phenomenon is numerically studied using different models of collisions. The aim of the present paper is to propose an effective formula for the impact damping ratio, as a parameter of the impact force model used to study different problems of structural pounding under seismic excitations. Its accuracy has been verified by four various approaches. Firstly, for the case of collisions between two structural elements, the dissipated energy during impact has been compared to the loss of kinetic energy. In the second stage of verifications, the peak impact forces during single collision have been analyzed. Then, the accuracy of different equations have been verified by comparing the impact force time histories for the situation when a concrete ball is dropped on a rigid concrete surface. Finally, pounding between two structures during earthquakes has been studied. The results of the analysis focused on comparison between dissipated and kinetic energy show relatively low errors between calculated and assumed values of the coefficient of restitution when the proposed equation is used. In addition, the results of the comparison between experimentally and numerically determined peak impact forces during single collision confirm the effectiveness of the approach. The same conclusion has been obtained for the whole impact time history for collision between a ball and a rigid surface. Finally, the results of the comparative analysis, conducted for pounding between two structures during an earthquake, confirm the simulation accuracy when the proposed approach is used. The above conclusions indicate that the proposed formula for impact damping ratio, as a parameter of impact force model for simulation of earthquake-induced structural pounding, is very effective and accurate in numerical simulations in the case of different scenarios.


2014 ◽  
Vol 21 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Mitra Djamal ◽  
Kazuhide Watanabe ◽  
Kyohei Irisa ◽  
Irfa Aji Prayogi ◽  
Akihiro Takita ◽  
...  

Abstract A method for evaluating the dynamic characteristics of force transducers against small and short-duration impact forces is developed. In this method, a small mass collides with a force transducer and the impact force is measured with high accuracy as the inertial force of the mass. A pneumatic linear bearing is used to achieve linear motion with sufficiently small friction acting on the mass, which is the moving part of the bearing. Small and short-duration impact forces with a maximum impact force of approximately 5 N and minimum half-value width of approximately 1 ms are applied to a force transducer and the impulse responses are evaluated.


2014 ◽  
Vol 566 ◽  
pp. 486-492
Author(s):  
Gaku Nishie ◽  
Takao Mori

An evaluation of the impact forces imparted due to wind flow onto and across walls is necessary to improve the safety of stopper components in swing-type windows. A strong wind test was performed to measure the impact force imparted by wind, and the characteristics of the wind energy and resulting impact force were clarified. An impact force evaluation method based on a simple mechanical model was proposed. Furthermore, it was confirmed that the deformation of a plastic stopper component due to an impact force could be modeled via an empirical linear formula, derived experimentally using the impact force imparted in a drop weight load test. The proposed evaluation method is considered to be useful for the safety design of swing-type windows.


1987 ◽  
Vol 109 (3) ◽  
pp. 237-243 ◽  
Author(s):  
R. Cointe ◽  
J.-L. Armand

The problem of the vertical entry of a rigid horizontal cylinder into an incompressible inviscid fluid initially at rest is addressed. The contributions of previous researchers are presented and discussed in the light of various assumptions introduced and the validity of the results obtained. Based on this review, realistic simplifying assumptions are introduced and the problem formulated. The method of matched asymptotic expansions is used to solve the resulting boundary-value problem. A new formula for the impact force is obtained, which differs from the classical von Ka´rma´n’s formula by a corrective term. The results obtained are compared with those of experimental observations and numerical calculations. The method may be extended to different geometries and nonvertical velocities to provide an estimate of the impact forces on the partially emerged pontoons of damaged semi-submersibles.


Sign in / Sign up

Export Citation Format

Share Document