Fixed Bed Column Studies for the Sorption of 2,4,6-Trinitrotoluene on the Aminated Lignin

2011 ◽  
Vol 221 ◽  
pp. 635-639
Author(s):  
Jian Ping Zhang ◽  
Xiao Yan Lin ◽  
Xue Gang Luo ◽  
Chi Zhang

A fixed bed column of aminated lignin (AmL) was used for the adsorption of 2,4,6-trinitrotoluene (TNT) from aqueous solution. The effects of AmL, bed height, inlet TNT concentration and feed flow rate on the breakthrough characteristics of the adsorption system were studied. It was found that deeper bed depth, higher initial concentration and lower flow rate were favorable to the adsorption of TNT on the AmL column. The adsorption data fitted well with the Thomas and Yoon–Nelson models. The AmL was shown to be suitable adsorbent for adsorption of TNT using fixed-bed adsorption column.

2017 ◽  
Vol 18 (2) ◽  
pp. 94-104
Author(s):  
Rozaimi Abu Samah

The main objective of this work was to design and model fixed bed adsorption column for the adsorption of vanillin from aqueous solution. Three parameters were evaluated for identifying the performance of vanillin adsorption in fixed-bed mode, which were bed height, vanillin initial concentration, and feed flow rate. The maximum adsorption capacity was increased more than threefold to 314.96 mg vanillin/g resin when the bed height was increased from 5 cm to 15 cm. Bohart-Adams model and Belter equation were used for designing fixed-bed column and predicting the performance of the adsorption process. A high value of determination coefficient (R2) of 0.9672 was obtained for the modelling of vanillin adsorption onto resin H103.


2013 ◽  
Vol 68 (10) ◽  
pp. 2294-2300 ◽  
Author(s):  
Jianfei Liu ◽  
Jiajun Chen ◽  
Lin Jiang ◽  
Cheng Chen

The adsorption behavior of phenanthrene (PHE) in Triton X-100 (TX100) solutions with fixed activated carbon (AC) bed was studied to recover the surfactant. The effect of various parameters like bed depths, flow rates, influent TX100 concentration, and influent PHE concentration were investigated. The breakthrough time of both TX100 and PHE increased with the increase of bed height and decrease of flow rate and influent concentration. In the case of fixed length, a lower flow rate, higher concentration of TX100, and lower concentration of PHE will benefit the longer effective surfactant recovery time. The adsorption data were integrated into bed depth service time models. The height of exchange zone of TX100 should be much shorter than that of PHE, which provides conditions to separate the hydrophobic organic compound from surfactant solutions with AC in a fixed bed. It is likely that the adsorption process is controlled by hydrophobic interaction.


2014 ◽  
Vol 70 (2) ◽  
pp. 192-199 ◽  
Author(s):  
Yanyan Wang ◽  
Xiang Zhang ◽  
Qiuru Wang ◽  
Bing Zhang ◽  
Jindun Liu

We used natural resources of halloysite nanotubes and alginate to prepare a novel porous adsorption material of organic–inorganic hybrid beads. The adsorption behaviour of Cu(II) onto the hybrid beads was examined by a continuous fixed bed column adsorption experiment. Meanwhile, the factors affecting the adsorption capacity such as bed height, influent concentration and flow rate were investigated. The adsorption capacity (Q0) reached 74.13 mg/g when the initial inlet concentration was 100 mg/L with a bed height of 12 cm and flow rate of 3 ml/min. The Thomas model and bed-depth service time fitted well with the experimental data. In the regeneration experiment, the hybrid beads retained high adsorption capacity after three adsorption–desorption cycles. Over the whole study, the new hybrid beads showed excellent adsorption and regeneration properties as well as favourable stability.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Nan Li ◽  
Jing Ren ◽  
Lin Zhao ◽  
Zhong-liang Wang

Removal of phosphate from solution using nanosized FeOOH-modified anion resin was studied in fixed bed column. Effect of bed height and flow rate on the breakthrough curves were investigated. Longer breakthrough time was obtained by increasing the bed height and decreasing the flow rate. Bed service depth time (BDST) model was applied to recount the relationship between bed service time and bed height. The value ofN0was calculated to be 21.4 g/L. Yoon-Nelson model, which fitted well with the experimental data, is allowable to estimate the breakthrough curves and characteristic parameters for phosphate adsorption in the column filled with nanosized FeOOH-modified anion resin.


2011 ◽  
Vol 695 ◽  
pp. 29-32
Author(s):  
Zai Fang Deng ◽  
Xue Gang Luo ◽  
Xiao Yan Lin

The performance of expanding rice husk (ERH) fixed bed column in removing Zn (II) from aqueous solution were studied in this work. Different column design parameters like bed height, flow rate and initial concentration were calculated. It was found that ERH was found to be an effective adsorbent for removal of Zn (II); and when conducted with Zn (II) concentration 12.8 mg L-1and flow rate 10 ml min-1with different bed depths such as 3, 6 and 9 cm, the equilibrium uptake was decreased from 5.181 to 4.33 mg g-1; the equilibrium uptake also decreased from 4.51 to 3.807 mg g-1with increasing of flow rate from 5 to 15 ml min-1and increased from 4.447 to 5.752 mg g-1when initial concentration increased from 12.8 to 35 mg L-1. The dynamics of adsorption process was modeled by bed depth service time (BDST), and indicating the validity of BDST model when applied to the continuous column studies.


2018 ◽  
Vol 18 (2) ◽  
pp. 294 ◽  
Author(s):  
Amina Abdel Meguid Attia ◽  
Mona Abdel Hamid Shouman ◽  
Soheir Abdel Atty Khedr ◽  
Nevin Ahmed Hassan

The goal of this article describes the potential of utilizing jojoba leaves and also modified with chitosan as an efficient adsorption materials for Congo red dye removal in a fixed-bed column. Inlet dye concentration, feed flow rate and bed height had a great influence on determining the breakthrough curves. The percentage dye removal was found to be approximately 69% of coated jojoba leaves with flow rate 3 mL/min, initial concentration 50 mg/L and 4 cm bed height. The dye uptake capacity at equilibrium (qe) for coated jojoba leaves showed higher values than that found for jojoba leaves. On this basis, this implies that the amino groups played an important role during the adsorption process. Breakthrough curves were satisfactorily in good agreement with both Thomas and Yoon-Nelson models based on the values of correlation coefficient (R2 ≥ 96).This study serves as a good fundamental aspect of wastewater purification on jojoba leaves as a novel adsorbent for the uptake of Congo red dyes from aqueous solution in a column system.


2014 ◽  
Vol 665 ◽  
pp. 491-494 ◽  
Author(s):  
Jia Jia Wang ◽  
Hui Huang ◽  
Jun Wei Wang ◽  
Shi Ying Tao

Porous starch was prepared by replacing ice crystals in frozen starch gel with ethanol using a solvent exchange method. Porous starch was packed in a laboratory scale fixed-bed column to continuous remove Methylene Blue (MB) from aqueous solution through adsorption. The effects of bed height, feed flow rate and initial MB concentration on the breakthrough time were investigated. The breakthrough time decreased with increase in the flow rate and initial MB concentration, and also varied with the change in bed height. Bed Depth Service Time (BDST) model was used to determine the column kinetic parameters, and showed good agreement with the experimental data.


2018 ◽  
Vol 8 (11) ◽  
pp. 2221 ◽  
Author(s):  
Olga Długosz ◽  
Marcin Banach

Vermiculite has been used for the removal of Cu 2 + and Ag + from aqueous solutions in a fixed-bed column system. The effects of initial silver and copper ion concentrations, flow rate, and bed height of the adsorbent in a fixed-bed column system were investigated. Statistical analysis confirmed that breakthrough curves depended on all three factors. The highest inlet metal cation concentration (5000 mg/dm3), the lowest bed height (3 cm) and the lowest flow rate (2 and 3 cm3/min for Ag + and Cu 2 + , respectively) were optimal for the adsorption process. The maximum total percentage of metal ions removed was 60.4% and 68.7% for Ag+ and Cu2+, respectively. Adsorption data were fitted with four fixed-bed adsorption models, namely Clark, Bohart–Adams, Yoon–Nelson and Thomas models, to predict breakthrough curves and to determine the characteristic column parameters. The adsorbent was characterized by SEM, FTIR, EDS and BET techniques. The results showed that vermiculite could be applied as a cost-effective sorbent for the removal of Cu 2 + and Ag + from wastewater in a continuous process.


2011 ◽  
Vol 287-290 ◽  
pp. 1620-1625
Author(s):  
Yan Wu ◽  
Zai Fang Deng ◽  
Yang Tao ◽  
Xue Gang Luo

Fixed-bed column studies for the removal of Ag(Ⅰ) and Cr(Ⅲ) from individual aqueous solutions using puffed rice husk were investigated in this work. The experiments were conducted to study the effect of important column parameters such as bed height, feed flow rate and feed initial concentration of solution. It was found that increasing bed depth yielded longer service time while increase in influent concentration and flow rate resulted in faster breakthrough. Bed Depth Service Time (BDST) model was applied to analyze the experimental data and the model parameters were evaluated. Good agreement of the experimental breakthrough curves with the model predictions was observed.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 215-232 ◽  
Author(s):  
Jaime López-Cervantes ◽  
Dalia I Sánchez-Machado ◽  
Reyna G Sánchez-Duarte ◽  
Ma A Correa-Murrieta

A continuous adsorption study in a fixed-bed column was carried out using a chitosan–glutaraldehyde biosorbent for the removal of the textile dye Direct Blue 71 from an aqueous solution. The biosorbent was prepared from shrimp shells and characterized by scanning electron microscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy. The effects of chitosan–glutaraldehyde bed height (3–12 cm), inlet Direct Blue 71 concentration (15–50 mg l−1), and feed flow rate (1–3 ml min−1) on the column performance were analyzed. The highest bed capacity of 343.59 mg Direct Blue 71 per gram of chitosan–glutaraldehyde adsorbent was obtained using 1 ml min−1 flow rate, 50 mg l−1 inlet Direct Blue 71 concentration, and 3 cm bed height. The breakthrough curve was analyzed using the Adams–Bohart, Thomas, and bed depth service time mathematical models. The behaviors of the breakthrough curves were defined by the Thomas model at different conditions. The bed depth service time model showed good agreement with the experimental data, and the high values of correlation coefficients (R2 ≥ 0.9646) obtained indicate the validity of the bed depth service time model for the present column system.


Sign in / Sign up

Export Citation Format

Share Document