Inhibition of Proliferation and Induction of Apoptosis of HT-29 Colorectal Adenocarcinoma Cells in Vitro by Anthocyanins from Lonicera Edulis

2011 ◽  
Vol 233-235 ◽  
pp. 2945-2948 ◽  
Author(s):  
Yi Hong Bao ◽  
Wen Xing Li ◽  
Zhen Yu Wang

Anthocyanins was known for their antioxidant and pharmacological properties used by humans for therapeutic purposes. Here, we study the inhibitory effects of anthocyanins fromLonicera edulison the proliferation of HT-29 colorectal adenocarcinoma cells and its possible mechanism in vivo by MTT. The different percentages of apoptotic cells present in flow cytometry analysis. The effect on HT29 cells was enhanced with increasing amount of anthocyanins. Typical morphological features of apoptosis were observed by transmission electron microscope. The mechanism of anthocyanins from Lonicera edulis on HT29 cell growth inhibition may be related to the induction of apoptosis.

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4181-4187 ◽  
Author(s):  
Patrick Frost ◽  
Farhad Moatamed ◽  
Bao Hoang ◽  
Yijiang Shi ◽  
Joseph Gera ◽  
...  

Abstract In vitro studies indicate the therapeutic potential of mTOR inhibitors in treating multiple myeloma. To provide further support for this potential, we used the rapamycin analog CCI-779 in a myeloma xenograft model. CCI-779, given as 10 intraperitoneal injections, induced significant dose-dependent, antitumor responses against subcutaneous growth of 8226, OPM-2, and U266 cell lines. Effective doses of CCI-779 were associated with modest toxicity, inducing only transient thrombocytopenia and leukopenia. Immunohistochemical studies demonstrated the antitumor responses were associated with inhibited proliferation and angiogenesis, induction of apoptosis, and reduction in tumor cell size. Although CCI-779-mediated inhibition of the p70 mTOR substrate was equal in 8226 and OPM-2 tumor nodules, OPM-2 tumor growth was considerably more sensitive to inhibition of proliferation, angiogenesis, and induction of apoptosis. Furthermore, the OPM-2 tumors from treated mice were more likely to show down-regulated expression of cyclin D1 and c-myc and up-regulated p27 expression. Because earlier work suggested heightened AKT activity in OPM-2 tumors might induce hypersensitivity to mTOR inhibition, we directly tested this by stably transfecting a constitutively active AKT allele into U266 cells. The in vivo growth of the latter cells was remarkably more sensitive to CCI-779 than the growth of control U266 cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1821-1821
Author(s):  
Mario I Vega ◽  
Yijiang Shi ◽  
Patrick Frost ◽  
Sara Huerta-Yepez ◽  
Alan Lichtenstein

Multiple myeloma (MM) is a hematological disorder characterized by a proliferation of malignant monoclonal plasma cells in the bone marrow (BM) and / or in extramedullary sites. Despite recent progress in OS rates, MM remains an incurable disease and most patients will relapse and require treatment. Deptor is a component of mTOR complexes and a constitutive inhibitor of their activities. It is known that the inhibition of Deptor results in the inhibition of the proliferation and induction of apoptosis in MM cells. In addition, high levels of Deptor are predictive of a poor response to conventional therapies, indicating that Deptor expression are important as a prognostic marker for patients with myeloma and is a possible therapeutic target. Our group previously identified a drug which prevents mTOR-Deptor binding (NSC126405) and induces cellular cytotoxicity in MM (Shi Y, et al 2016). In this study, we developed a new related chemical inhibitor (43 M) capable of inducing the inhibition of the mTOR / Deptor interaction and results in the negative regulation of Deptor that leads to the inhibition of proliferation and induces apoptosis in several MM cell lines. The cytotoxic effect of 43 M is not dependent of caspase activation and induces the activation of p70 and AKT (T308). This leads to the induction of apoptosis in MM cell lines and tumor cells derived from MM patients. The degradation of Deptor induced by 43 M is dependent on the proteasome complex since it was prevented in the presence of MG132. In vivo, 43 M prevents the expression of Deptor in a xenograft tumor, and delayed tumor growth and interestingly, induces the eradication of tumors in 40% of mice in a murine model of MM, without significant toxic implications. Recent studies show that Deptor expression protects MM cells against Bortezomib treatment, suggesting that anti-Deptor drugs can synergize with proteasome inhibitors (PIs). However, the combination of 43 M + Bortezomib was not synergistic, and was antagonistic in vitro. These results are probably due to the prevention of the proteasomal degradation of Deptor, suggesting a possible use of the 43 M inhibitor in MM in the absence of the current PIs. This study describes for the first time the possible role of Deptor as a therapeutic target using a chemical inhibitor capable of degrading and inducing a cytotoxic effect in MM cell lines. In addition, Deptor is reported as an important therapeutic target in an in vivo MM model. Shi Y, Daniels-Wells TR, Frost P, Lee J, Finn RS, Bardeleben C, Penichet ML, Jung ME, Gera J, Lichtenstein A. Cytotoxic Properties of a DEPTOR-mTOR Inhibitor in Multiple Myeloma Cells. Cancer Res. 2016 Oct 1;76(19):5822-5831 Disclosures No relevant conflicts of interest to declare.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
YC Oh ◽  
YH Jeong ◽  
WK Cho ◽  
SJ Lee ◽  
JY Ma

1972 ◽  
Vol 28 (01) ◽  
pp. 031-048 ◽  
Author(s):  
W. H. E Roschlau ◽  
R Gage

SummaryInhibition of blood platelet aggregation by brinolase (fibrinolytic enzyme from Aspergillus oryzae) has been demonstrated with human platelets in vitro and with dog platelets in vivo and in vitro, using both ADP and collagen as aggregating stimuli. It is suggested that the optimal inhibitory effects of brinolase occur indirectly through the generation of plasma fibrinogen degradation products, without compromising platelet viability, rather than by direct proteolysis of platelet structures.


Author(s):  
Ya-Nan Li ◽  
Ni Ning ◽  
Lei Song ◽  
Yun Geng ◽  
Jun-Ting Fan ◽  
...  

Background: Deoxypodophyllotoxin, isolated from theTraditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant antitumor activity with strong toxicity in vitro and in vivo. Objective: In this article, we synthesized a series of deoxypodophyllotoxin derivatives, and evaluated their antitumor effectiveness.Methods:The anti tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29 andMG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 157 ◽  
Author(s):  
Adriana Tomoko Nishiya ◽  
Marcia Kazumi Nagamine ◽  
Ivone Izabel Mackowiak da Fonseca ◽  
Andrea Caringi Miraldo ◽  
Nayra Villar Scattone ◽  
...  

Canine oral mucosal melanomas (OMM) are the most common oral malignancy in dogs and few treatments are available. Thus, new treatment modalities are needed for this disease. Bacillus anthracis (anthrax) toxin has been reengineered to target tumor cells that express urokinase plasminogen activator (uPA) and metalloproteinases (MMP-2), and has shown antineoplastic effects both, in vitro and in vivo. This study aimed to evaluate the effects of a reengineered anthrax toxin on canine OMM. Five dogs bearing OMM without lung metastasis were included in the clinical study. Tumor tissue was analyzed by immunohistochemistry for expression of uPA, uPA receptor, MMP-2, MT1-MMP and TIMP-2. Animals received either three or six intratumoral injections of the reengineered anthrax toxin prior to surgical tumor excision. OMM samples from the five dogs were positive for all antibodies. After intratumoral treatment, all dogs showed stable disease according to the canine Response Evaluation Criteria in Solid Tumors (cRECIST), and tumors had decreased bleeding. Histopathology has shown necrosis of tumor cells and blood vessel walls after treatment. No significant systemic side effects were noted. In conclusion, the reengineered anthrax toxin exerted inhibitory effects when administered intratumorally, and systemic administration of this toxin is a promising therapy for canine OMM.


Sign in / Sign up

Export Citation Format

Share Document