Study on Shape Formation of Post-Tensioned and Shaped Hypar Space Truss

2011 ◽  
Vol 243-249 ◽  
pp. 1262-1266 ◽  
Author(s):  
Dong Zhao Chen ◽  
Ji Ping Hao ◽  
Zhen Qing Wang

Shape formation of post-tensioned and shaped hypar space truss is presented in this paper, the test space truss can be deformed into saddle shape by tensioning positive diagonal bottom layer strand. Nonlinear finite element analysis is applied in shape formation of space truss model. Based on both geometry and material nonlinearity, new FEM refering ‘tube to tube’ contact, is employed. Connector elements are used to simulate the bolt connection of the top joint, and the end of web. The results show that new method is relatively much more accurate than the previous way for the shaped size, and the theoretical values are consistent with experimental ones in stress and internal force distribution trend although the former ones are smaller, for FE model could not consider diagonal lower chord joining the structural system during shape formation.

2011 ◽  
Vol 378-379 ◽  
pp. 332-336
Author(s):  
Yong He Li ◽  
Ai Rong Liu ◽  
Qi Cai Yu ◽  
Pan Tang ◽  
Fang Jie Cheng

With an example of steel pipe concrete leaning-type arch bridge, space truss system Finite Element Analysis model is constructed using the Ruiz-Penzien random seismic vibration power spectrum model. The impact of inclined arch rib angle and the number of cross brace between main and stable arch ribs on the seismic internal force response under lateral random seismic excitation is also studied in this research. Research finding shows, the in-plane bending moment of main arch rib gradually increases with increasing stable arch rib angle and cross brace, whereas the out-of-plane bending moment and axial force display a decreasing trend. In general, this indicates that increasing stable arch rib angle and number of cross brace improves the lateral aseismatic performance of leaning-type arch bridge.


2017 ◽  
Vol 8 (3) ◽  
pp. 326-340 ◽  
Author(s):  
Faezeh Nejati ◽  
Mahmood Hosseini ◽  
Amir Mahmoudzadeh

Purpose Almost design code is required for repairability of the buildings after a major earthquake. One such idea is “directed-damage design” (DDD), which means guiding the damage to some pre-decided parts of the structural system. To use the DDD idea for creation of repairable buildings, in this study, a structural system with seesaw motion with respect to a central massive support has been considered for steel buildings with square plan, and the bottom ends of the all circumferential columns at the lowest story have been equipped with double-ADAS (DADAS) dampers, which dissipate a great portion of the seismic input energy. The purpose of this paper is to investigate the hysteretic behavior of DADAS dampers by using finite element analysis. At first, a set of regular steel multistory buildings with five stories have been designed based on the conventional code provisions. Then, the structures of the designed buildings have been changed into the structure with seesaw motion by using, at the base level of the building, a massive central column, eliminating other middle columns, and equipping circumferential columns with DADAS dampers. Design/methodology/approach For repairability buildings in the last three mentioned studies a set of orthogonal strong girders, in the form of grid, has been used. In the present study, the number of bays in the considered building is four in both directions. A major modification has been made in the yielding-plate energy dissipating elements of the circumferential columns, which makes their manufacturing and installation much practical as illustrated in the following sections of the paper. Findings In the proposed rocking structural system for regular multistory steel buildings, creation of the possibility of rocking motion has been done by using a space truss resting on a huge central hinge support at base level with a series of circumferential energy dissipating columns at that level. Originality/value One such idea is DDD idea, which means guiding the damage to some pre-decided parts of the structural system.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


2010 ◽  
Vol 168-170 ◽  
pp. 553-558
Author(s):  
Feng Xia Li ◽  
Bu Xin

Most steel beam-column connections actually show semi-rigid deformation behavior that can contribute substantially to overall displacements of the structure and to the distribution of member forces. Steel frame structure with semi-rigid connections are becoming more and more popular due to their many advantages such as the better satisfaction with the flexible architectural design, low inclusive cost and environmental protect as well. So it is very necessary that studying the behavior of those steel frame under cyclic reversal loading. On the basics of connections experiments the experiment research on the lateral resistance system of steel frame structure has been completed. Two one-second scale, one-bay, two-story steel frames with semi-rigid connections under cyclic reversal loading. The seismic behavior of the steel frames with semi-rigid connections, including the failure pattern, occurrence order of plastic hinge, hysteretic property and energy dissipation, etc, was investigated in this paper. Some conclusions were obtained that by employing top-mounted and two web angles connections, the higher distortion occurred in the frames, and the internal force distributing of beams and columns was changed, and the ductility and the absorbs seismic energy capability of steel frames can be improved effectively.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


2010 ◽  
Vol 163-167 ◽  
pp. 2112-2117
Author(s):  
Miao Xin Zhang ◽  
Bao Dong Liu ◽  
Peng Fei Li ◽  
Zhi Mao Feng

Corrugated steel plate and surrounding soils are working together to share the load in buried corrugated steel structures. It is complicated to consider the structure-soil interaction, so the finite element method has already become the chief means of complicated structure analysis. Based on a practical project, considering structure-soil interaction, by using the finite element program of ANSYS, the paper set up a 2-D FE model and analyzed the soil pressure, the structural deformation and the internal force under different load conditions in detail. The analysis shows that structure-soil interaction has brought about stresses redistribution of surrounding soils, and adverse effects of soil pressure and displacement were limited. The variation range of soil pressure on the crown of arch increases with the load increases and the peak value of soil pressure approach to the code value and a rebound appears in the vehicle load range. The tendencies of vertical soil displacement are nearly the same to different load conditions, and the peak value of moments has an obvious change and can be influenced greatly by deflective load.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


Author(s):  
J. Rodriguez ◽  
M. Him

Abstract This paper presents a finite element mesh generation algorithm (PREPAT) designed to automatically discretize two-dimensional domains. The mesh generation algorithm is a mapping scheme which creates a uniform isoparametric FE model based on a pre-partitioned domain of the component. The proposed algorithm provides a faster and more accurate tool in the pre-processing phase of a Finite Element Analysis (FEA). A primary goal of the developed mesh generator is to create a finite element model requiring only essential input from the analyst. As a result, the generator code utilizes only a sketch, based on geometric primitives, and information relating to loading/boundary conditions. These conditions represents the constraints that are propagated throughout the model and the available finite elements are uniformly mapped in the resulting sub-domains. Relative advantages and limitations of the mesh generator are discussed. Examples are presented to illustrate the accuracy, efficiency and applicability of PREPAT.


Sign in / Sign up

Export Citation Format

Share Document