Variation of Moisture Content and Safety Factor of Silt Subgrade under Rainfall Infiltration

2011 ◽  
Vol 243-249 ◽  
pp. 4161-4165 ◽  
Author(s):  
Hong Bo Zhang ◽  
Xiu Guang Song

Because of the special capillary and water-sensitive characters, the moisture content of silt subgrade in Alluvial Plain of the Yellow River is generally higher than the optimum value, which will lead to bad support conditions of subgrade. In order to analyze the water-absorbent property of silt subgrade, both the rainfall seepage and the capillary phenomenon were simulated in laboratory, which reveals that both factors have distinct effects on the moisture content of compacted silt soil. Triaxial tests of compacted silt soil reveal that the cohesive force reduces obviously with the increasing of moisture content. What’s more, the internal friction angle also reduces rapidly arriving at saturation state. By adopting Geo-slope code, the rainfall infiltration mode of silt subgrade was simulated under different rain type and rain duration. Results show that the subgrade slope is easy to lose stability because of much rainfall infiltration. In addition, the minimum safety coefficient happens at the time of rainfall ending. And the slope safety can be threatened seriously by the repetitious rainfall.

Author(s):  
Guohui Xu ◽  
Xin Wang ◽  
Congcong Wei ◽  
Zibu Fu ◽  
Qingpeng Zhao

Wave-induced seabed slide could happen even at very gently sloping silty seabed. Based on the wave-seabed interaction, the safety coefficient calculation model of wave-induced gentle seabed slides in the seabed instability was carried out using limit equilibrium method, Bishop Method, in this paper. The calculated results shows that the effective internal cohesion c′ and the effective internal friction angle φ′ affect the location of slip surface and the magnitude of the safety coefficient significantly. The safety coefficient rises linearly with the increases of c′ and φ′ at a fixed depth. The results fit reasonable well with the slide calculation results from a wave flume experiment in laboratory. Additionally, it was concluded that the silty seabed tended to slide under wave actions at the depth less than 5 meters in the Yellow River Subaqueous Delta.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bingxiang Yuan ◽  
Zengrui Cai ◽  
Mengmeng Lu ◽  
Jianbing Lv ◽  
Zhilei Su ◽  
...  

Based on the theory of rainfall infiltration, the surface infiltration model of multilevel filled slope was established by using the SEEP/W module of GeoStudio. The changes of the volumetric water content (VWC) and pore water pressure (PWP) in the surface of the slope during the rainfall infiltration were analyzed, and the influence of the change of the rainfall conditions on the VWC and PWP was considered. The analysis showed that VWC and PWP increased when the rain fell, and the growth rate of the higher feature point was higher. The affected area was concentrated on the upper part of the surface about 0.75 m. With the increasing of rainfall intensity, the slope surface getting to transient saturation state was quick, and the time of the PWP increasing to 0 among the feature points of same elevation was shortened. Meanwhile, the PWP presented a positive value, and as the infiltration depth increased, the transient saturation region expanded. The safety coefficient of the multistage filled slope was continuously reduced; after the stop of rainfall, the VWC and the PWP decreased, and the decline rate of the higher feature points was higher. In addition, the PWP of the lower part increased, and the safety factor of the slope presented a trend of rebound.


2019 ◽  
Vol 11 (19) ◽  
pp. 5397 ◽  
Author(s):  
Liang Jia ◽  
Jian Guo ◽  
Yanbin Jiang ◽  
Yong Fu ◽  
Zhidong Zhou ◽  
...  

Loess is a typical collapsible soil, which is widely distributed in the upper and middle areas around the Yellow River of China. The stabilization of loess with lime provides a significant improvement in the physical and the mechanical characteristics of the loess and is therefore widely used in the pavement base and subgrade. Therefore, a systematic investigation of Mohr-Coulomb failure envelope of lime stabilized loess needs to be conducted. In this pursuit, the present research envisages the investigation of the effects of the lime content, porosity and curing time on the strength parameters (friction angle (φ) and cohesion (c)), using a series of triaxial tests performed on lime stabilized loess specimens. The experimental results revealed that the friction angle (φ) was independent of the lime content, the porosity and the curing time of the specimen for a given lime stabilized loess, while the factors mentioned above had a significant effect on the cohesion (c) of the lime stabilized loess. For a relatively short curing time (7 days), the change in the lime content did not present an obvious effect on the cohesion (c) of the stabilized loess. However, when the curing time (28, 90 and 180 days) was longer, the increase of the lime content significantly enhanced the cohesion of the stabilized loess. When the lime content was constant, the cohesion (c) of the stabilized loess increased linearly with the decrease in the void ratio. A power function equation was proposed to assess the comprehensive influences of the factors like the lime content, porosity and curing time on cohesion (c). Finally, the Mohr-Coulomb failure envelopes were drawn based on the triaxial test for 47 specimens with various curing time and confining pressure, and the shear strength parameters obtained by the proposed equation were also compared with the experimental results.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2012 ◽  
Vol 594-597 ◽  
pp. 512-515
Author(s):  
Zheng Rong Zhao ◽  
Hong Xia Yang

Combined with the silty soil characteristics of the Yellow River alluvial plain and the subgrade filling of Ji-He expressway, the paper discusses silty soil, stabilized silty soil strength and stress-stain characteristics through the indoor triaxial shear test. The results show that the remodeling silty soil has obvious peak, brittle failure, low residual strength after being destroyed and the stress-strain curve shows a softening type in confining pressure 100kPa lower stress level. In the confining pressure 400kPa higher stress level, soil samples peak is not obvious,mainly plastic failure and the stress-strain curve is close to a hardening type. Compared to mixed with 8% lime, stabilized silty soil of mixed with 4% cement and 4% lime shows that the partial stress peak is more obvious when destroyed and the residual strength is drastically reduced and more incline to brittle failure. In different the age, compared to mixed with 8% lime, stabilized silty soil of mixed with 4% cement and 4% lime shows that internal friction angle becomes larger and cohesion improves gradually whose amplitude is much larger than internal friction angle. Therefore, a more effective way to stabilize the silty soil of the Yellow River alluvial plain is to select silty soil mixed with 4% cement and 4% lime.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Xi Chen ◽  
Wei Wang ◽  
Yajun Cao ◽  
Qizhi Zhu ◽  
Weiya Xu ◽  
...  

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.


Engineering characterization which are useful for "temperate" zone soils usually fail to predict the field performance of bauxitic soils, because the index tests upon which the characterization are based are not always reproducible for bauxitic soils. Fifteen (15) bauxitic soil of undisturbed and disturbed samples from 3 distinct sites in Kuantan, all derived from basalt parent rock but representing various stages of weathering were subjected to engineering and mineralogic tests. Values for cohesion and friction angles are evaluated. Soils from Semambu has the highest moisture content of 33.27%, the cohesion value is however lower compared to Bukit Goh which has moisture content of 21.74%. Study are further done to discover the relationship with cohesion and friction angles. Thus, by measuring the cohesion and friction angle can evaluate the performance of bauxite shear strength.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jianwei Yue ◽  
Limin Zhao ◽  
Baoxi Zhang ◽  
Qingmei Kong ◽  
Siyuan Wang ◽  
...  

The silty clay in the lower reaches of the Yellow River is characterized by loose structure, low strength, and strong capillary effect. Based on the technology of ancient glutinous rice mortar and microbial-induced calcium carbonate precipitation (MICP), experiments on optimal mass ratio of cementitious liquid to bacterial liquid and optimal concentration of cementitious liquid for MICP and improved MICP technology were carried out by measuring the production of CaCO3, and direct shear test and unconfined compressive strength test of plain silt, glutinous mixing silt, and improved silt with MICP and modified MICP were conducted. The microstructure of the reaction products of MICP and improved MICP technology were also evaluated based on scanning electron microscopy (SEM). Research results showed that the mechanical properties of silt with glutinous rice slurry were effectively improved. With the increase in the concentration of glutinous rice slurry, the strength and internal friction angle of soil samples first increased and then decreased, and the cohesion presented a linear increasing trend. When the concentration of cementitious liquid was 0.5 M and the mass ratio of cementitious liquid to bacterial liquid was 2 : 1, the amount of CaCO3 formed was the most, and the conversion rate of Ca2+ was more than 80%. The improved MICP could increase the conversion rate of Ca2+ (93.44%). An improved MICP showed that glutinous rice slurry could improve bacterial activity, increase the urease content in the bacterial solution, and promote the production of CaCO3. Silt cohesion and internal friction angle of the silt were improved by the improved MICP technology, and the strengthening effect of mechanical properties of modified MICP-reinforced soil is better than that of the MICP-reinforced soil; conventional MICP technology could also improve the soil cohesion, but the improvement in the internal friction angle was not obvious. The SEM results indicated that compared with the reaction product of MICP technology, the structure of the product of improved MICP technology is more compact, resulting in a marked reinforcement of MICP performance with glutinous rice slurry. This study provides new insights into enhancing the mechanical behaviour of MICP-treated silt in the Yellow River Basin with glutinous rice slurry.


1992 ◽  
Vol 29 (3) ◽  
pp. 522-526 ◽  
Author(s):  
Y. P. Vaid ◽  
S. Sasitharan

The effects of stress path and loading direction in the triaxial test on strength and dilatancy of sand are investigated. It is shown that the unique relationship observed between peak friction angle and dilation rate at peak in conventional triaxial tests is followed regardless of stress path, confining stress at failure, relative density, and the mode of loading (compression or extension). Key words : sand, peak friction angle, dilatancy, stress path, triaxial test.


Sign in / Sign up

Export Citation Format

Share Document