Dislocations in Phase-Change Ge2Sb2Te5 Alloy

2007 ◽  
Vol 26-28 ◽  
pp. 1097-1100 ◽  
Author(s):  
Wei Zhang ◽  
Se Ahn Song ◽  
Hong Sik Jeong ◽  
Jin Gyu Kim ◽  
Youn Joong Kim

Characteristic 60° dislocations occurred in hexagonal phase of Ge2Sb2Te5 thin foil cooled from 500°C to room temperature in a high voltage transmission electron microscope. The Burgers vector of dislocation was identified as 1/ 24 < 9902 > which is the edge component of 1 3 < 2110 > projected on the (1120) lattice plane. The dislocation resulted from the cooling-induced stress/strain in the Ge2Sb2Te5 alloy.

Alloys of Al-5% Pb and Al-5% Pb-0.5% Si (by mass) have been manufactured by rapid solidification and then examined by transmission electron microscopy. The rapidly solidified alloy microstructures consist of 5-60 nm Pb particles embedded in an Al matrix. The Pb particles have a cube-cube orientation relation with the Al matrix, and are cub-octahedral in shape, bounded by {100} Al, Pb and {111} Al, Pb facets. The equilibrium Pb particle shape and therefore the anisotropy of solid Al-solid Pb and solid Al-liquid Pb surface energies have been monitored by in situ heating in the transmission electron microscope over the temperature range between room temperature and 550°C. The ani­sotropy of solid Al-solid Pb surface energy is constant between room temperature and the Pb melting point, with a {100} Al, Pb surface energy about 14% greater than the {111} Al, Pb surface energy, in good agreement with geometric near-neighbour bond energy calculations. The {100} AI, Pb facet disappears when the Pb particles melt, and the anisotropy of solid Al-liquid Pb surface energy decreases gradually with increasing temperature above the Pb melting point, until the Pb particles become spherical at about 550°C.


Nanoscale ◽  
2018 ◽  
Vol 10 (17) ◽  
pp. 7978-7983 ◽  
Author(s):  
Liang Cheng ◽  
Xianfang Zhu ◽  
Jiangbin Su

The coalescence of two single-crystalline Au nanoparticles on surface of amorphous SiOxnanowire, as induced by electron beam irradiation, wasin situstudied at room temperature in a transmission electron microscope.


2000 ◽  
Vol 650 ◽  
Author(s):  
A. Meldrum ◽  
K. Beaty ◽  
L. A. Boatner ◽  
C. W. White

ABSTRACTIrradiation-induced amorphization of Cd2Nb2O7 pyrochlore was investigated by means of in-situ temperature-dependent ion-irradiation experiments in a transmission electron microscope, combined with ex-situ ion-implantation (at ambient temperature) and RBS/channeling analysis. The in-situ experiments were performed using Ne or Xe ions with energies of 280 and 1200 keV, respectively. For the bulk implantation experiments, the incident ion energies were 70 keV (Ne+) and 320 keV (Xe2+). The critical amorphization temperature for Cd2Nb2O7 is ∼480 K (280 keV Ne+) or ∼620 K (1200 keV Xe2+). The dose for in-situ amorphization at room temperature is 0.22 dpa for Xe2+, but is 0.65 dpa for Ne+ irradiation. Both types of experiments suggest a cascade overlap mechanism of amorphization. The results were analyzed in light of available models for the crystalline-to-amorphous transformation and were compared to previous ionirradiation experiments on other pyrochlore compositions.


1981 ◽  
Vol 7 ◽  
Author(s):  
A. Mogro-Campero ◽  
E.L. Hall ◽  
J.L. Walter ◽  
A.J. Ratkowski

ABSTRACTSpecimens of amorphous Fe75B25 produced by rapid quenching from the melt were annealed to complete crystallization and subjected to 1 MeV electron irradiation in a transmission electron microscope at room temperature and at 130 K. The irradiation was interrupted at various intervals in order to obtain bright field images and diffraction patterns. The Fe3B crystals did not become amorphous at room temperature, even after damage levels of several dpa, whereas at 130 K the crystalline to amorphous transformation was observed to be complete at damage levels below 1 dpa. The results are combined with those of ion irradiation work on Fe3B; qualitative agreement is found between Fe3B and previous work on the Zr3Al alloy concerning their response to displacement damage by electron and ion irradiation.


Author(s):  
Robert W. Weise

The role that scanning electron microscopy (SEM) is playing in descriptive helminthology is becoming more apparent in the literature. However, the majority of papers on the SEM of helminths have used conventional or modified light microscope techniques of fixation and dehydration, and not established SEM techniques in which freeze- and critical point-drying are routinely used. The present investigation was undertaken to examine the applicability of modified scanning and transmission electron microscope techniques for the preparation of certain helminths for SEM.Method I.– Live animal-parasitic nematodes were fixed in 6% phosphate buffered glutaraldehyde for 24 hr at room temperature.


2012 ◽  
Vol 05 (01) ◽  
pp. 1250006 ◽  
Author(s):  
N. ZÁRUBOVÁ ◽  
Y. GE ◽  
J. GEMPERLOVÁ ◽  
A. GEMPERLE ◽  
S.-P. HANNULA

Tensile tests were performed in situ in a transmission electron microscope to investigate the twinning mechanism in non-modulated Ni–Mn–Ga martensite. The reorientation of the twin variants occurs via twinning dislocations. Their generation and movement were followed; the glide plane and Burgers vector were verified. Individual twinning dislocations were visualized.


2008 ◽  
Vol 47-50 ◽  
pp. 1446-1449 ◽  
Author(s):  
Won Yong Kim ◽  
Han Sol Kim

Microstructures and pseudoelastic behavior of Ti-Nb-Ge alloys were investigated in order to correlate the pseudoelasticity and microstructure together with martensite transformation. XRD results and transmission electron microscope revealed that stress-induced martensitic transformation takes place during room temperature deformation in the present alloys. Recrystallization heat treatment of the present alloy displayed pseudoelastic behavior to be prominent. It is concluded that the pseudoelastic behavior of a metastable-β Ti-Nb-Ge alloy is correlated to the stress-induced martensite transformation.


1988 ◽  
Vol 133 ◽  
Author(s):  
G. Dirras ◽  
P. Beauchamp ◽  
P. Veyssière

ABSTRACTβ-brass single crystals oriented along <001> were deformed between room temperature and 300°C. The deformation microstructure and dissociation properties were studied by transmission electron microscopy under weak-beam imaging conditions.Whatever the deformation temperature, superdislocations with <111> Burgers vector and strong edge component dominate within the microstructure. In addition, below the temperature of the flow stress peak (≈ 250°C), the density of screw relative to mixed superdislocations decreases as straining temperature increases. Dissociation does not always occur on the slip plane neither does it proceed exclusively by glide, even in samples deformed at 100°C.


Sign in / Sign up

Export Citation Format

Share Document