scholarly journals Thermomechanical Couplings in Aircraft Tire Rolling/Sliding Modeling

2011 ◽  
Vol 274 ◽  
pp. 81-90 ◽  
Author(s):  
Ange Kongo Kondé ◽  
Iulian Rosu ◽  
F. Lebon ◽  
L. Seguin ◽  
Olivier Brardo ◽  
...  

This paper presents a finite element model for the simulation of aircraft tire rolling. Large deformations, material incompressibility, heterogeneities of the material, unilateral contact with Coulomb friction law are taken into account. The numerical model will allow estimating the forces in the contact patch - even in critical and extreme conditions for the aircraft safety and security. We show the influence of loading parameters (vertical load, velocity, inflating pressure) and slip angle on the Self Aligning torque and on the lateral friction coefficient. A friction coefficient law corresponding to Chichinadze model is considered to take into account thermal effects in the aircraft tire model behaviour.

Author(s):  
Erfan Afrasiabi ◽  
Francesco Braghin ◽  
Edoardo Sabbioni ◽  
Vincenzo Scali

Based on experimental data, a nonlinear tire model able to predict tire contact forces as a function of slippage, slip angle, camber angle, vertical load, tire bulk and tread temperatures as well as road surface roughness and road temperature has been developed.


Author(s):  
Mohammed Khattab ◽  
Tamer Wasfy

Abstract The objective of this study is to investigate if a high-fidelity finite element model can predict the Schallamach wave phenomenon in belt-drives. To this end a computational model which closely mimics a recently developed one-pulley experimental belt-drive apparatus, was created. The dynamic response predicted by the model is compared to the experiment results in order to demonstrate that the model can be used to predict the Schallamach wave phenomenon. Furthermore, the model is used to investigate the roles of Coulomb friction coefficient, adhesion, and torque direction on stick-slip instability effects.


2006 ◽  
Vol 34 (2) ◽  
pp. 100-118 ◽  
Author(s):  
N. Miyashita ◽  
K. Kabe

Abstract An analytical tire model for cornering force (CF) and self-aligning torque (SAT) is described on the basis of the Fiala model. CF and SAT come mainly from the shear stress and sliding friction at the tread/road interface. The CF and SAT variations also change the kinetic conditions for their own generations, that is, the contact-pressure distribution, the tire-part deformation, and the relative position of the steering axis within the contact patch. The present model, the CF/SAT system model, which includes these conditional changes through the CF and SAT feedback loops, approximates the slip-angle dependence of CF and SAT with high accuracy. The inverse data analysis, that is, least-squares fittings of the measured data to the model, give some experimental information about the tread friction coefficient (the adhesive and sliding friction coefficient) and the variation in contact-pressure distribution during cornering. The CF/SAT system model, as well as the CP/SATP model in Part I, may be useful for both the tire production at tire makers and the vehicle dynamics simulation at car makers.


Author(s):  
Rustam Ali ◽  
Moustafa El-Gindy ◽  
Ranvir Dhillon ◽  
Trivedi Mukesh ◽  
Fredrik Öijer ◽  
...  

The advancement of computerized modeling has allowed for the creation of extensive pneumatic tire models. These models have been used to determine many tire properties and tire-road interaction parameters which are either prohibitively expensive or unavailable with physical models. This paper focuses on the prediction of tire-ground interaction with emphasis on individual and combined effect of tire slip angle and camber angle at various operating parameters. The forces generated at tire contact such as rolling resistance, cornering force, aligning moment and overturning moment can be predicted and used to optimize the tire design parameters. In addition to above stated, the three-groove FEA truck tire model representing radial-ply tire of size 295/75R22.5 was used in vertical load deflection test to determine enveloping characteristics under various load conditions and inflation pressures.


Author(s):  
I. Korkmaz ◽  
J. J. Barrau ◽  
M. Berthillier ◽  
S. Creze

Abstract The dynamic behavior of a cantilever beam damped by dry friction has been studied The beam is represented partly by its effective modal parameters, obtained from a finite element model. The Coulomb friction law is used and a temporal integration of the dynamic response is performed. A detailed parametric study, highlighting the influence of the static and the dynamic friction coefficients, the viscous damping coefficient, the contact stiffness and the position of the damper along the span, on the dynamic response has been conducted. A better understanding of the damping mechanism by dry friction has been obtained. The numerical results have been compared to experimental results, and a good agreement was found. The results could be applied to a turbine blade with a blade to ground damper.


1990 ◽  
Vol 18 (1) ◽  
pp. 13-65 ◽  
Author(s):  
W. W. Klingbeil ◽  
H. W. H. Witt

Abstract A three-component model for a belted radial tire, previously developed by the authors for free rolling without slip, is generalized to include longitudinal forces and deformations associated with driving and braking. Surface tractions at the tire-road interface are governed by a Coulomb friction law in which the coefficient of friction is assumed to be constant. After a brief review of the model, the mechanism of interfacial shear force generation is delineated and explored under traction with perfect adhesion. Addition of the friction law then leads to the inception of slide zones, which propagate through the footprint with increasing severity of maneuvers. Different behavior patterns under driving and braking are emphasized, with comparisons being given of sliding displacements, sliding velocities, and frictional work at the tire-road interface. As a further application of the model, the effect of friction coefficient and of test variables such as load, deflection, and inflation pressure on braking stiffness are computed and compared to analogous predictions on the braking spring rate.


1977 ◽  
Vol 5 (2) ◽  
pp. 75-82 ◽  
Author(s):  
A. Schallamach

Abstract Expressions are derived for side force and self-aligning torque of a simple tire model on wet roads with velocity-dependent friction. The results agree qualitatively with experimental results at moderate speeds. In particular, the theory correctly predicts that the self-aligning torque can become negative under easily realizable circumstances. The slip angle at which the torque reverses sign should increase with the normal load.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


Robotica ◽  
2010 ◽  
Vol 29 (5) ◽  
pp. 787-796 ◽  
Author(s):  
Feng Qi ◽  
Tianshu Wang ◽  
Junfeng Li

SUMMARYThis paper presents a new planar passive dynamic model with contact between the feet and the ground. The Hertz contact law and the approximate Coulomb friction law were introduced into this human-like model. In contrast to McGeer's passive dynamic models, contact stiffness, contact damping, and coefficients of friction were added to characterize the walking model. Through numerical simulation, stable period-one gait and period-two gait cycles were found, and the contact forces were derived from the results. After investigating the effects of the contact parameters on walking gaits, we found that changes in contact stiffness led to changes in the global characteristics of the walking gait, but not in contact damping. The coefficients of friction related to whether the model could walk or not. For the simulation of the routes to chaos, we found that a small contact stiffness value will lead to a delayed point of bifurcation, meaning that a less rigid surface is easier for a passive model to walk on. The effects of contact damping and friction coefficients on routes to chaos were quite small.


Sign in / Sign up

Export Citation Format

Share Document