Finite Element Analysis of Pipeline Steel Air-Bending

2011 ◽  
Vol 279 ◽  
pp. 207-213
Author(s):  
Qiang Li ◽  
Li Feng Fan ◽  
Ying Gao ◽  
Cong Hui Song ◽  
Wen Tao Yang

Air bending of wide-punch large radius of curvature, as a special bending mode, has been widely applied in the production of large diameter pipeline JCO forming. The JCO forming process is accomplished by several air bending processes. The quality and shape of pipe are greatly influenced by the air bending. During the present work, the bending is investigated into using the finite element (FE) method and orthogonal design of experiment. Experiments are carried out and the experimental result is very close to the result simulated by finite element analysis. Springback, forming force and residual stress are discussed. The aim of this research is to investigate the influencing degree of parameters, such as sheet material, sheet thickness, bending angle, lubrication and punch radius; in particular the effect of springback, forming force, residual stress on air bending parameters are also discussed.

Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


2008 ◽  
Vol 575-578 ◽  
pp. 1461-1466
Author(s):  
Byeong Choon Goo ◽  
Jung Won Seo

Railcar wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles have been more severe in recent years due to speed-up. Therefore, a more precise evaluation of railcar wheel life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking are two major mechanisms of the railcar wheel failure. One of the main sources influencing on the contact zone failure is residual stress. The residual stress in wheels formed during heat treatment in manufacturing changes in the process of braking. Thus the fatigue life of railcar wheels should be estimated by considering both thermal stress and rolling contact. Also, the effect of residual stress variation due to manufacturing process and braking process should be included in simulating contact fatigue behavior. In this paper, an evaluation procedure for the contact fatigue life of railcar wheels considering the effects of residual stresses due to heat treatment, braking and repeated contact load is proposed. And the cyclic stressstrain history for fatigue analysis is simulated by finite element analysis for the moving contact load.


2004 ◽  
Vol 32 (2) ◽  
pp. 257-263 ◽  
Author(s):  
M. L. Raghavan ◽  
S. Trivedi ◽  
A. Nagaraj ◽  
D. D. McPherson ◽  
K. B. Chandran

1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


2020 ◽  
Vol 8 (1) ◽  
pp. 48 ◽  
Author(s):  
Vasileios A. Mamatsopoulos ◽  
Constantine Michailides ◽  
Efstathios E. Theotokoglou

Today, the offshore oil and gas and wind power industry is a heavily regulated segment, and current standards have established restrictions which yield a very limited weather window for submarine cable installations due to experience with cable failure in bad weather. There are two main limiting factors in current practice during cable installation of an S-lay configuration: the design criterion for the minimum allowable radius of curvature in the touch down point and the avoidance of axial compression in the touch down zone. Accurate assessment of the cable integrity during offshore installation has drawn great attention and is related to the existing available analysis and design tools. The main purpose of this paper is to develop and propose a quick and easy custom-made analysis tool, which is able to export similar results as sophisticated finite element analysis software. The developed tool utilizes analytical equations of a catenary-type submarine structure extended to account for varying cross-sections with different weights and/or stiffnesses, as is the real practice. A comparative study is presented in this paper to evaluate the significance for the modeling of the “out of water” cable segment required for accurate safety factor quantification during a laying operation. The efficiency and accuracy of the proposed tool are proven through a validation study comparing the results and the computational effort and time with commercial finite element analysis software. The analysis error in the case of not modeling the “out of water” cable part is significant, especially in shallow water areas, which proves the importance of using the proposed analysis tool.


Sign in / Sign up

Export Citation Format

Share Document