Microstructure and Tensile Properties of a Mg-5Sn-4Al Alloy

2011 ◽  
Vol 287-290 ◽  
pp. 343-347 ◽  
Author(s):  
Shou Qiu Tang ◽  
Ji Xue Zhou ◽  
Yuan Sheng Yang ◽  
Chang Wen Tian

The microstructure and tensile properties at room temperature of as-cast, solution-treated and aged samples of a Mg-5Sn-4Al (wt%) alloy are investigated. The microstructure of the as-cast sample consists of a-Mg primary, Mg2Sn and Mg17Al12divorced eutectic, secondary precipitations Mg17Al12and Mg2Sn. After solution treatment, all the Mg17Al12particles and the majority of Mg2Sn phases are dissolved into the matrix and the tensile strength and the elongation of the alloy increase obviously. During aging process many fine particles of Mg2Sn precipitate which result in the improvement of the yield strength.

2010 ◽  
Vol 654-656 ◽  
pp. 639-642 ◽  
Author(s):  
Ji Xue Zhou ◽  
Yuan Sheng Yang ◽  
Shou Qiu Tang ◽  
Chang Wen Tian

The microstructure and tensile properties at room temperature of as-cast, solution-treated and aged samples of a Mg-5Sn-5Zn (wt%) alloy are investigated. The microstructure of the as-cast sample consists of -Mg primary, Mg-MgZn eutectic, divorced eutectic Mg2Sn and secondary precipitation Mg2Sn. After solution treatment, all the MgZn particles and the majority of Mg2Sn phases are dissolved into the matrix and the tensile strength and the elongation of the alloy increase obviously. During aging process many fine particles precipitate which result in the improvement of the yield strength.


2013 ◽  
Vol 747-748 ◽  
pp. 398-403 ◽  
Author(s):  
Dong Qing Zhao ◽  
Xu Guang Dong ◽  
Xin En Zhang ◽  
An Jiang Gao ◽  
Ji Xue Zhou ◽  
...  

The microstructures and tensile properties of as-cast, solution-treated and aged Mg-4Zn-2Sn-2Al (wt.%) alloy have been investigated. The microstructure of the as-cast alloy consists of α-Mg, Mg2Sn and Mg32(Al,Zn)49 phases. The yield tensile strength and the ultimate tensile strength of the as-cast alloy are 87.7 MPa and 241.3 MPa, respectively, and the elongation reaches to 18.8% showing excellent ductility. After solution treatment, all of the Mg32(Al,Zn)49 phase and the majority of Mg2Sn particles have dissolved into the matrix. During aging process, Mg2Sn phase precipitates from the α-Mg supersaturated solid solution. With the precipitation strengthening of Mg2Sn phase, the yield tensile strength and the ultimate tensile strength of the alloy increase to 112.5 MPa and 280.4 MPa, respectively, while, the elongation decreases to 12%.


2021 ◽  
Vol 1023 ◽  
pp. 45-52
Author(s):  
Xiao Yan Wang ◽  
Meng Li ◽  
Zhi Xun Wen

After solid solution treatment at 1335°C for 4 hours and cooling to room temperature at different rate, the nickel-based single crystal superalloy were made into three kinds of nickel-based single crystal superalloy materials containing different size γ′ phases, respectively. The tensile test of I-shaped specimens was carried out at 980°C, and their effect of γ′ phase microstructure on the tensile properties was studied. The results show that the yielding strength of the material air-cooled to room temperature was lower than that with cooling rate at 0.15°C/s, but both of them were lower than the yielding strength of original material. Little difference was found on the elastic modulus of I-shaped specimens made of three kinds of materials. When the cubic degree of the γ′ phase is higher and the size is larger, the tensile properties of the material is better, which can be attributed to the larger size and narrower channel of the matrix phase that lead to higher dislocation resistance.


2015 ◽  
Vol 816 ◽  
pp. 446-450
Author(s):  
Xiao Bing Zheng ◽  
Wen Bo Du ◽  
Ke Liu ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The microstructure evolution of the Mg-3Zn-0.5Er-0.5Al (mass fraction, %) alloy under the different condition was investigated. The results showed that as-cast Mg-3Zn-0.5Er-0.5Al alloy mainly consisted of primary large irregular Mg4Zn7 phase and needlelike (Mg, Zn, Er, Al) quaternary phase. Mg4Zn7 phase almost dissolved into the matrix after solid solution treatment at 400 oC for 10 h, while the (Mg, Zn, Er, Al) quaternary phase still existed. The solution treated alloy was extruded at 250 °C. The ultimate tensile strength of the as-extruded alloy was approximately 268 MPa and the YTS was approximately 163 MPa companying with an elongation of 28%. The tensile strength of the as-extruded alloy improved obviously, which was mainly attributed to the grain refinement.


2010 ◽  
Vol 150-151 ◽  
pp. 961-964
Author(s):  
Hyojin Kim ◽  
Masataka Sakiyama ◽  
Kenichi Takemura

The effects of thermal cycling and freezing after water absorption on tensile properties of green composites were examined. Jute fiber and matrix were used as the reinforcement and the matrix. The thermal fatigue was conducted as a fatigue test. Heating and freezing process are performed alternately for 0.5h, 1h and 24h during 10 cycles, heating and freezing temperature were 60 and -20 . In a freezing after water absorption, the damage by an expansion of water was examined. The freezing after the water absorption during 1-5 days was performed in a day under the environment of -20 . In thermal cycling, tensile strength and modulus were significantly decreased as the time passes. In 24h-treated test, the decrease rates of tensile strength and modulus were about 50 % compared with that of room temperature. In freezing after water absorption, tensile strength and modulus were decrease compared with that of the room temperature.


2012 ◽  
Vol 482-484 ◽  
pp. 1530-1533
Author(s):  
Ming Li Huang ◽  
Hua Ying Li ◽  
Hua Ding

In the present work, mechanical properties and microstructures of hot-rolled and solution-treated Fe-26Mn-6Al-1C steel (6Al steel) were investigated. Tensile tests were carried out at room temperature. The samples were characterized by using XRD, OM, SEM and TEM. The results suggested that the microstructure of the hot rolled 6Al steel was fully austenitic. After solution treatment and deformation, the microstructure was still single austenite. With the increase of the solution treatment temperatures, the strength decreased and the elongation increased. After solution treated at 1100°C for 1h, the yield strength, ultimate tensile strength and elongation were 378MPa, 756MPa and 57%.


2005 ◽  
Vol 488-489 ◽  
pp. 629-632 ◽  
Author(s):  
Qu Dong Wang ◽  
Yongjun Chen ◽  
Jianguo Peng ◽  
Man Ping Liu ◽  
Wen Jiang Ding ◽  
...  

Microstructure and mechanical properties of AM50+xTi (x=0,0.01,0.1wt%) magnesium alloys extruded from as-cast and solution treated conditions have been studied. Results show that Ti element obviously refines the microstructure of AM50 magnesium alloy and Mg17Al12 phase. Only 0.01 wt% Ti addition can make the Mg17Al12 phase turn into particles and small rod-like shape. Ti addition improves tensile strength at room temperature, and obviously improves elongation at elevated temperatures up to 200°C. The AM50+xTi alloys extruded from as-cast have better tensile strength at room temperature and better elongation at 100°C, 150°C and 200°C than that of AM50+xTi alloys extruded from solution treatment; The plasticity of AM50 magnesium alloys increases with Ti content increasing and temperature increasing for the tensile fractograph.


2016 ◽  
Vol 879 ◽  
pp. 2336-2341
Author(s):  
Bai Qing Xiong ◽  
Kai Wen ◽  
Yong An Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
...  

The microstructure of as-extruded Al-9.8Zn-2.0Mg-1.8Cu aluminum alloy and its evolution during solution treatment were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC) analysis and electron back-scatter diffraction (EBSD). The results indicated that second phase of the as-extruded alloy mainly consisted of Mg (Zn, Cu, Al)2 and Fe-rich phases. After solution treated at 475°C for 4h, Mg (Zn, Cu, Al)2 phases were dissolved into the matrix, while Fe-rich phases still existed. Fe-rich phases cannot dissolve by prolonging solution time. The room temperature tensile strength gradually increased by prolonging solution time at 475oC. The ultimate tensile strength of the alloy reached 700MPa after both single and two-step solution treatments.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


2006 ◽  
Vol 114 ◽  
pp. 91-96 ◽  
Author(s):  
Maxim Yu. Murashkin ◽  
M.V. Markushev ◽  
Julia Ivanisenko ◽  
Ruslan Valiev

The effects of equal channel angular pressing (ECAP), further heat treatment and rolling on the structure and room temperature mechanical properties of the commercial aluminum alloys 6061 (Al-0.9Mg-0.7Si) and 1560 (Al-6.5Mg-0.6Mn) were investigated. It has been shown that the strength of the alloys after ECAP is higher than that achieved after conventional processing. Prior ECAP solution treatment and post-ECAP ageing can additionally increase the strength of the 6061 alloy. Under optimal ageing conditions a yield strength (YS) of 434 MPa and am ultimate tensile strength (UTS) of 470 MPa were obtained for the alloy. Additional cold rolling leads to a YS and UTS of 475 and 500 MPa with 8% elongation. It was found that the post-ECAP isothermal rolling of the 1560 alloy resulted in the formation of a nano-fibred structure and a tensile strength (YS = 540 MPa and UTS = 635 MPa) that has never previously been observed in commercial non-heat treatable alloys.


Sign in / Sign up

Export Citation Format

Share Document