Warm Hydroformability and Mechanical Properties of Pre- and Post- Heat Treated Al6061 Tubes

2007 ◽  
Vol 29-30 ◽  
pp. 87-90 ◽  
Author(s):  
Hyae Kyung Yi ◽  
Jung Hwan Lee ◽  
Young Seon Lee ◽  
Young Hoon Moon

Warm hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes were investigated in this study. For the investigation, as-extruded, fully annealed and T6- treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and 200ÓC. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were evaluated by tensile test. The tensile test specimens were obtained from hexagonal shaped tube hydroformed at 200ÓC forming temperature. As a result, hydroformability of fully annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was T6 treated after warm hydroforming. However, hydroformed part using T6 pre treated tube represents low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is proved to be the most cost-effective among various processing conditions.

2014 ◽  
Vol 878 ◽  
pp. 450-458
Author(s):  
Ling Jun Kong ◽  
Xiong Fei Zhang ◽  
Shuang Hong Tian ◽  
Ting Liu ◽  
Ya Xiong

Densified biomass pellets named as H/S-BPs were prepared from waste wood sawdust (S) in the presence of water hyacinth fiber (H) as solid bridge under room temperature and 6 MPa lower than in the previous study. Mechanical properties including relaxed density (ρr), resiliency (R), abrasion resistance (AR) and impact resistance index (IRI) were evaluated. Results showed that adding H greatly reduced negative effect of resiliency on the mechanical properties of H/S-BPs during storage. For example, H/S-BPs compressed at 6 MPa in an H/S mass ratio of 1 to 3 presented lower resiliency of 10% and higher relaxed density of 1.04 kg dm-3 than pellets without H fiber. This is due to the intertwining action of H fiber, what fabricates solid bridge, replacing the bonding creating by applying high pressure to resist the disruptive force caused by elastic recovery. Thus, compression of waste H and S in a mass ratio of 1 to 3 at room temperature under 6 MPa is a cost-effective process to produce densified sustainable bio-fuel pellet as well as dispose waste S and H, combining the economical and environmental benefits.


2019 ◽  
Vol 31 (02) ◽  
pp. 2050027
Author(s):  
Lei Ma ◽  
Changsheng Li ◽  
Ailong Zhang ◽  
Wangyu Hu

The mechanical properties of irradiated iron are studied by molecular dynamics simulation. The initial models are irradiated with the energy of primary knocked-on atoms (PKA) of 10[Formula: see text]keV at 100, 300, 500 and 600 K, and then all the irradiated models are subjected to tensile test. The results reveal that the mechanical properties of irradiated iron are changed compared with un-irradiated iron, the yield stress and strain decrease after irradiation, and the irradiation causes the hardening of micro-structure at low temperature and high temperature, but it results in the softening of structure at room temperature. The plastic reduces for irradiated iron under tensile test, more stacking faults are formed in the crystal structure as the temperature increases.


2009 ◽  
Vol 156-158 ◽  
pp. 477-482
Author(s):  
Audrey Hémel ◽  
Alain Jacques ◽  
Thomas Schenk ◽  
Tomáš Kruml

A new bulge test device has been built, with the aim to perform mechanical tests on membranes with a thickness in the 100 nm to 10 µm range, between room temperature and 900°C. The first tests on Si3N4 and gold films give results consistent with literature data.


2011 ◽  
Vol 473 ◽  
pp. 594-601 ◽  
Author(s):  
Hasan Gedikli ◽  
Ömer Necati Cora ◽  
Muammer Koç

This study numerically investigated the effects of process parameter variations such as blank holder forces (800kN-1200kN), strain rates (0.0013/sec, 0.013/sec, 0.13/sec), coefficient of friction (0.05-0.15), temperature (150 °C, 260 °C) and apex angles (0º, 60º, 90º,120º) on warm hydroforming of AA 5754-O sheet blanks. Warm hydroforming process was simulated through hydraulic bulge test with circular and elliptical die openings. Dome height and sheet thinning were selected as control parameters for formability of AA 5754-O sheet blanks. Results showed that the dome height and formed blank thicknesses did not change significantly with the variation of coefficient of friction and blank holder force. Moreover, increasing forming temperature and non-isothermal conditions yielded slightly better formability. On the other hand, increase in strain rate, and elliptical type of bulge test cavity led to significant decreases in dome height and formed part thinning. Another significant finding was that the elliptical bulge test model and isothermal analyses did not reveal the effect of anisotropy for the sheet material concerned.


2011 ◽  
Vol 686 ◽  
pp. 219-224 ◽  
Author(s):  
Xiao Yu Zhong ◽  
Guang Jie Huang ◽  
Fang Fang He ◽  
Qing Liu

Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C with strain rates between 10-3 and 10-1s-1 has been systematically investigated. Microstructure evolution and texture were determined using optical microscopy (OM) and electron back-scattered diffraction (EBSD) techniques, respectively. Our results indicated that the strength and elongation-to-fracture were more sensitive to strain rates at elevated temperature rather than that at room temperature; dynamic recrystallization (DRX) and relaxation of stress at elevated temperature resulted in dramatic change of mechanical properties. Compared with strain rate, the temperature played a more important role in ductility of AZ31B Mg alloy sheet.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1510 ◽  
Author(s):  
Denis Mihaela Panaitescu ◽  
Sorin Vizireanu ◽  
Sergiu Alexandru Stoian ◽  
Cristian-Andi Nicolae ◽  
Augusta Raluca Gabor ◽  
...  

Microcrystalline cellulose (MCC) was surface modified by two approaches, namely a plasma treatment in liquid using a Y-shaped tube for oxygen flow (MCC-P) and a TEMPO mediated oxidation (MCC-T). Both treatments led to the surface functionalization of cellulose as illustrated by FTIR and XPS results. However, TEMPO oxidation had a much stronger oxidizing effect, leading to a decrease of the thermal stability of MCC by 80 °C. Plasma and TEMPO modified celluloses were incorporated in a poly(3-hydroxybutyrate) (PHB) matrix and they influenced the morphology, thermal, and mechanical properties of the composites (PHB-MCC-P and PHB-MCC-T) differently. However, both treatments were efficient in improving the fiber–polymer interface and the mechanical properties, with an increase of the storage modulus of composites by 184% for PHB-MCC-P and 167% for PHB-MCC-T at room temperature. The highest increase of the mechanical properties was observed in the composite containing plasma modified cellulose although TEMPO oxidation induced a much stronger surface modification of cellulose. This was due to the adverse effect of more advanced degradation in this last case. The results showed that Y-shaped plasma jet oxidation of cellulose water suspensions is a simple and cheap treatment and a promising method of cellulose functionalization for PHB and other biopolymer reinforcements.


2012 ◽  
Vol 560-561 ◽  
pp. 979-983
Author(s):  
Chang Jian Geng ◽  
Bao Lin Wu ◽  
Yan Dong Wang

Uni-axial tensile test was conducted at room temperature on a weak texture AZ31B magnesium alloy at different strain rate, from 2.8×10-5s-1 to 1.1×10-1s-1. The mechanical behavior was investigated. It was found that as strain rate is increased, flat character of the stress-strain curves can be found and {10-12} tension twinning is responsible for this phenomenon. The sample exhibites a brittle fracture at 1.1×10-1s-1 strain rate while exhibites a ductile fracture character at 2.8×10-5s-1 strain rate.


2007 ◽  
Vol 539-543 ◽  
pp. 1775-1779 ◽  
Author(s):  
Jeong Min Kim ◽  
Jae Min Lee ◽  
Joong Hwan Jun ◽  
Ki Tae Kim ◽  
Woon Jae Jung

A small amount of Zn or Sn was added to Mg-3%Al alloy to improve the formability of alloy. The elongation of as-rolled alloy was increased at both room temperature and 300oC by addition of Sn or Zn, even though the tensile strength at room temperature was remarkably increased only by Zn. When the as-rolled alloy was annealed to be fully recrystallized, the ductility at room temperature was significantly enhanced, however the elongation at 300oC was rather decreased probably attributed to the dynamic recrystallization occurred during the tensile test.


2007 ◽  
Vol 340-341 ◽  
pp. 599-604 ◽  
Author(s):  
Young Seon Lee ◽  
Jung Hwan Lee ◽  
M.Y. Lee ◽  
Young Hoon Moon ◽  
T. Ishikawa

Formability of tube in elevated temperature is essential data to design the warm hydroforming process parameters, such as tube diameter, forming temperature and die geometries. Since the quantitative data of forming limit can be used to predict the failure on forming process, formability data available on the FE analysis is one of the very important information for the optimum design. In this study, the effect of heat treatment conditions and deformation temperature on the formability was investigated for the warm hydroforming of Al6061 tube. Full annealing and T6-treatment are applied for the heat treatment of Al6061 tubes. To evaluate the hydroformability, uni-axial tensile test and bulge test were performed at temperature ranges between room temperature and 300oC. The measured flow stresses were used as input parameters for the simulation of warm hydroforming process. The damage value and strain variation during hydroforming are analysed by FEM. A forming limit based on the ductile fracture criteria has been proposed by combining the results of experimental and FE analysis for the estimation of formability and optimization of warm hydroforming process.


Sign in / Sign up

Export Citation Format

Share Document