Preparation and Characterization of Sawdust Derived Bio-Fuel Pellets Depending on "Solid Bridge" Intertwining Action of Hyacinth Fiber

2014 ◽  
Vol 878 ◽  
pp. 450-458
Author(s):  
Ling Jun Kong ◽  
Xiong Fei Zhang ◽  
Shuang Hong Tian ◽  
Ting Liu ◽  
Ya Xiong

Densified biomass pellets named as H/S-BPs were prepared from waste wood sawdust (S) in the presence of water hyacinth fiber (H) as solid bridge under room temperature and 6 MPa lower than in the previous study. Mechanical properties including relaxed density (ρr), resiliency (R), abrasion resistance (AR) and impact resistance index (IRI) were evaluated. Results showed that adding H greatly reduced negative effect of resiliency on the mechanical properties of H/S-BPs during storage. For example, H/S-BPs compressed at 6 MPa in an H/S mass ratio of 1 to 3 presented lower resiliency of 10% and higher relaxed density of 1.04 kg dm-3 than pellets without H fiber. This is due to the intertwining action of H fiber, what fabricates solid bridge, replacing the bonding creating by applying high pressure to resist the disruptive force caused by elastic recovery. Thus, compression of waste H and S in a mass ratio of 1 to 3 at room temperature under 6 MPa is a cost-effective process to produce densified sustainable bio-fuel pellet as well as dispose waste S and H, combining the economical and environmental benefits.

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2329
Author(s):  
Zaid Ahmad ◽  
Waleed Wafa Al Dajani ◽  
Michael Paleologou ◽  
Chunbao (Charles) Xu

The present study demonstrated a sustainable and cost-effective approach to depolymerize/oxidize softwood (SW) and hardwood (HW) kraft lignins using concentrated hydrogen peroxide at temperatures ranging from 25 to 35 °C, in the absence of catalysts or organic solvents. The degree of lignin depolymerization could be simply controlled by reaction time, and no further separation process was needed at the completion of the treatment. The obtained depolymerized lignin products were comprehensively characterized by GPC–UV, FTIR, 31P-NMR, TGA, Py-GC/MS and elemental analysis. The weight-average molecular weights (Mw) of the depolymerized lignins obtained from SW or HW lignin at a lignin/H2O2 mass ratio of 1:1 after treatment for 120 h at room temperature (≈25 °C) were approximately 1420 Da. The contents of carboxylic acid groups in the obtained depolymerized lignins were found to significantly increase compared with those of the untreated raw lignins. Moreover, the depolymerized lignin products had lower thermal decomposition temperatures than those of the raw lignins, as expected, owing to the greatly reduced Mw. These findings represent a novel solution to lignin depolymerization for the production of chemicals that can be utilized as a bio-substitute for petroleum-based polyols in polyurethane production.


2007 ◽  
Vol 29-30 ◽  
pp. 87-90 ◽  
Author(s):  
Hyae Kyung Yi ◽  
Jung Hwan Lee ◽  
Young Seon Lee ◽  
Young Hoon Moon

Warm hydroformability and mechanical properties of pre- and post- heat treated Al6061 tubes were investigated in this study. For the investigation, as-extruded, fully annealed and T6- treated Al 6061 seamless tubes were prepared. To evaluate the hydroformability, uni-axial tensile test and free bulge test were performed at room temperature and 200ÓC. Also mechanical properties of hydroformed part at various pre- and post-heat treatments were evaluated by tensile test. The tensile test specimens were obtained from hexagonal shaped tube hydroformed at 200ÓC forming temperature. As a result, hydroformability of fully annealed tube is 25% higher than that of extruded tube. The tensile strength and elongation were more than 330MPa and 12%, respectively, when hydroformed part was T6 treated after warm hydroforming. However, hydroformed part using T6 pre treated tube represents low elongation, 8%. Therefore, the T6 treatment after hydroforming for as-extruded tube is proved to be the most cost-effective among various processing conditions.


2018 ◽  
Vol 918 ◽  
pp. 85-92
Author(s):  
Marcel Graf ◽  
Sebastian Härtel ◽  
Alexander Bauer ◽  
Wolfgang Förster ◽  
Dagmar Bublikova ◽  
...  

The aim is to realize a Q&P (Quenching and Partitioning) process for a hot forged component made of low-alloyed advanced high-strength steel (AHSS) 42MnSiCr. One advantage of this steel is the low alloy concept which is cost-effective. After forging, the component is cooled down to room temperature with a subsequent heat treatment to achieve the characteristic microstructure with martensite and retained austenite. The material is annealed and then quenched to just above the martensite finish temperature (MF-temperature). Hence, in the martensitic matrix about 10 to 15% retained austenite is included. Finally, the Q&Ped material is artificially aged at 250 °C to support the diffusion process of carbon from the over-saturated martensite into the austenite. Thereby, mechanical properties of 2000 MPa for tensile strength with fracture strains of 10% can be achieved. This paper provides details of the process and material behavior for a reduction of the process chain. The goal is to develop a technology for the quenching and partitioning treatment of forged components by using the thermal energy from forging. Ideally, the quenching step should be performed in the forming dies just above the MF-temperature with additional holding on the temperature level. The majority of forged parts have different cross sections. Therefore, the cooling conditions are inhomogeneous in each cross section of the components. This cooling behavior was analyzed in laboratory tests with a forged part. Furthermore, the heat transfer coefficients were determined for different cooling media (water, air). The cooling technology was experimentally and numerically simulated in a first step for the conventional process chain (forging, cooling to room temperature, austenitisation, quenching, artificial ageing) and correlated with the microstructural evolution in combination with the component’s mechanical properties.


Author(s):  
Sri Anggraeni ◽  
◽  
Asep Bayu Dani Nandiyanto ◽  
Silmi Ridwan Putri ◽  
Aghisna Nuthfah Anshar ◽  
...  

The purpose of this study was to utilize waste potato skins (PS) and yam skins (YS) in the production of briquettes with rice waste as a binder. The basic materials used to utilize waste, especially potato skins (PS), yam skins (YS), and rice waste. Experiments were carried out by mixing and molding carbon particles made from an equal mass ratio of PS and YS with rice as binders (i.e., 10, 20, 30, 40, and 50%). PS and YS were dried, carbonized at 250°C for 3 hours, and sieved to get sizes of 250 μm. To make compact briquettes, the molded materials were pressed with 5.66 Pa. Several characterizations were analyzed, including compressed density, relaxed density, relaxation ratio, percentage of moisture content, burning rate, percentage of water resistance index, percentage of durability index, specific fuel consumption, the puncture test, and the hardness test. The characterization results showed that the prepared briquettes have good quality, and the best was for 10% of adhesive. The best durability index was for briquettes with 30% of adhesive. The compressed density and water resistance index were optimum when using 40% of adhesive. In general, briquettes with a low amount of adhesive have a high-density value, low moisture content, and a long flammability. This research is expected to convey information regarding how to reuse rice waste as an adhesive for briquettes.


2018 ◽  
Vol 925 ◽  
pp. 304-310 ◽  
Author(s):  
Philipp Weiß ◽  
Moritz Riebisch ◽  
Andreas Bührig-Polaczek

High silicon grades of ductile cast iron are known to be highly advantageous in regard to technically relevant properties and economic efficiency. In particular, the outstanding mechanical properties lead to an increasing demand since 2011, the year of incorporation to the EN 1563 standard. However, low impact resistance and spontaneous failure are concerns that limit the application, especially at lower temperatures. Silicon serves as a solid solution strengthener. By the addition of cobalt, aluminum and nickel as additional solid solution strengthener, an improvement in mechanical properties compared to only silicon could be obtained. Previous studies showed that the addition of 1.5 wt.% Ni to an EN-GJS-500-14 grade with 3.8 wt.% Si resulted in a tensile strength of 650 MPa at 15 % elongation. In the present study, silicon was substituted stepwise by nickel and aluminum, simultaneously aiming at the retention of the mechanical properties of the EN-GJS-500-14 grade. By decreasing the silicon content to 3.3 wt.% Si at 1.1 wt.% Ni and 0.2 wt.% Al, EN-500-14 was obtained. Even though, the presence of pearlite in the matrix was observed, this substitution of silicon led to an increase in Charpy-V-notch toughness by 4 Joule at room temperature. For further alloy design of high silicon ductile cast iron for simultaneously substituting silicon and improving the mechanical properties and notch toughness, the restrictions for pearlite formation must be complied.


2016 ◽  
Vol 54 (2) ◽  
pp. 249
Author(s):  
Dao Phi Hung ◽  
Nguyen Anh Hiep ◽  
Mac Van Phuc

The effect of diane-epoxy resin (DE) and poly(tetrahydrofuran) divinyl ether (DVE) content on the photo crosslinking reaction of the DE/DVE system with triarylsulfonium salt (TAS) as photo-initiator were investigated. The results showed that increasing DVE content improved some of physico-mechanical properties of photocrosslinked coatings although the relative hardness and the speed of photocrosslinking reaction reduced. The results of the changes of functional groups, relative hardness and gel fraction as well as the physico-mechanical properties of UV-cured coatings based on DE/DVE/TAS system illustrated that suitable mass ratio of constituents was 80/20/5. The UV-cured coating based on the system DE/DVE/TAS = 80/20/5 cross-linked completely after 3.6 seconds UV-exposure and having good physico-mechanical properties: impact resistance reached 180 kg.cm; the flexibility obtained 1mm; the adhesion and relative hardness were point 1 and 0.7, respectively.


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


2020 ◽  
Vol 11 (41) ◽  
pp. 6549-6558
Author(s):  
Yohei Miwa ◽  
Mayu Yamada ◽  
Yu Shinke ◽  
Shoichi Kutsumizu

We designed a novel polyisoprene elastomer with high mechanical properties and autonomous self-healing capability at room temperature facilitated by the coexistence of dynamic ionic crosslinks and crystalline components that slowly reassembled.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Author(s):  
Gary McVoy ◽  
Mark Sengenberger ◽  
Elizabeth Novak

Public-works agencies have an obligation to enhance the environment as opportunities arise. The New York State Department of Transportation (NYSDOT) has developed an environmental initiative to make an affirmative contribution to the environment, using the department’s organizational strengths. The environmental initiative is a paradigm shift applicable to all departments of transportation (DOTs). Conventional reactive regulatory compliance can reduce unnecessary environmental damage and sometimes gain grudging regulatory agency cooperation; however, it is not a positive, satisfying way of doing the people’s work. Through proactive steps, NYSDOT has become an important part of the state’s environmental solution (often at little or no additional cost) and has changed its working relationships with environmental agencies and groups. As these agencies and groups have become partners, instead of adversaries, permit-approval times have improved, mitigation costs have declined, morale has improved, and cost-effective environmental benefits are being realized. Procedures are outlined to apply the engineering capabilities of a DOT to the environmental-stewardship responsibilities shared by all governmental organizations.


Sign in / Sign up

Export Citation Format

Share Document