scholarly journals Prediction of Tool Lifetime and Surface Roughness for Nickel-Based Waspaloy

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shao-Hsien Chen ◽  
Chung-An Yu

In recent years, most of nickel-based materials have been used in aircraft engines. Nickel-based materials applied in the aerospace industry are used in a wide range of applications because of their strength and rigidity at high temperature. However, the high temperatures and high strength caused by the nickel-based materials during cutting also reduce the tool lifetime. This research aims to investigate the tool wear and the surface roughness of Waspaloy during cutting with various cutting speeds, feed per tooth, cutting depth, and other cutting parameters. Then, it derives the formula for the tool lifetime based on the experimental results and explores the impacts of these cutting parameters on the cutting of Waspaloy. Since the impacts of cutting speed on the cutting of Waspaloy are most significant in accordance with the experimental results, the high-speed cutting is not recommended. In addition, the actual surface roughness of Waspaloy is worse than the theoretical surface roughness in case of more tool wear. Finally, a set of mathematical models can be established based on these results, in order to predict the surface roughness of Waspaloy cut with a worn tool. The errors between the predictive values and the actual values are 5.122%∼8.646%. If the surface roughness is within the tolerance, the model can be used to predict the residual tool lifetime before the tool is damaged completely. The errors between the predictive values and the actual values are 8.014%∼20.479%.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Harun Gokce

Stainless steels with unique corrosion resistance are used in applications with a wide range of fields, especially in the medical, food, and chemical sectors, to maritime and nuclear power plants. The low heat conduction coefficient and the high mechanical properties make the workability of stainless steel materials difficult and cause these materials to be in the class of hard-to-process materials. In this study, suitable cutting tools and cutting parameters were determined by the Taguchi method taking surface roughness and cutting tool wear into milling of Custom 450 martensitic stainless steel. Four different carbide cutting tools, with 40, 80, 120, and 160 m/min cutting speeds and 0.05, 0.1, 0.15, and 0.2 mm/rev feed rates, were selected as cutting parameters for the experiments. Surface roughness values and cutting tool wear amount were determined as a result of the empirical studies. ANOVA was performed to determine the significance levels of the cutting parameters on the measured values. According to ANOVA, while the most effective cutting parameter on surface roughness was the feed rate (% 50.38), the cutting speed (% 81.15) for tool wear was calculated.


Author(s):  
Krishnaraj Vijayan ◽  
N. Gouthaman ◽  
Tamilselvan Rathinam

The objectives of hard turning of high speed steel (HSS-M2 Grade) are to investigate the effect of cutting parameters on cutting force, tool wear and surface integrity. This article presents the experimental results of heat treated high speed steel machined in a CNC lathe using cubic boron nitride (CBN) tools. Turing experiments were carried out using central composite design (CCD) method. From the experiments the influence of cutting parameters and their interactions on cutting forces, temperature and surface roughness (Ra) were analyzed. Following this, multi response optimization was done to find the best combination of parameters for minimum force, minimum temperature and minimum surface roughness. The experimental results showed that the most contributing factors were feed followed by depth of cut and spindle speed. A white layer formed during hard turning was also analyzed by scanning electron microscope (SEM) and the results showed that it was greatly influenced by the speed and depth of cut. Tool wear was experiments were conducted at the optimum cutting conditions and it was noted that the tool satisfactorily performed up to 10 minutes at dry condition.


2020 ◽  
Vol 44 (3) ◽  
pp. 395-404
Author(s):  
Morvarid Memarianpour ◽  
Seyed Ali Niknam ◽  
Sylvain Turenne ◽  
Marek Balazinski

Three distinctive regions of tool wear, known as initial wear, steady-state wear, and accelerated wear, are well understood. However, the effects of cutting parameters on the initial tool wear mechanism, morphology, and size have received less attention as compared to the other two regions. Knowing that adequate control of initial tool wear may lead to extended tool life, in particular in hard-to-cut metals such as superalloys, this topic has become a source of attention. Amongst superalloys, Inconel 718 is considered as one of the most difficult to cut materials, which has a wide range of industrial applications. This study intends to evaluate the effects of cutting parameters on initial tool wear, as well as tool wear progression, when turning Inconel 718. Therefore, microstructural evaluation of the initial tool wear mode under various cutting conditions, as well as tool wear measurements, were conducted. It was observed that certain elements of the workpieces were migrated to the insert flank face. This is evidence of adhesion at the initial moments of the cutting process. In contrast to many other easy-to-cut materials, the steady-state wear period when turning Inconel 718 is significantly short under a higher level of cutting speed and feed rate.


2013 ◽  
Vol 395-396 ◽  
pp. 1026-1030 ◽  
Author(s):  
Zhao Lin Zhong ◽  
Xing Ai ◽  
Zhan Qiang Liu

This paper presents the experimental results of cutting force and surface roughness of 7050-T7451 aluminum alloy under the cutting speed of 3000~5000m/min. The cutting forces and surface roughness with different cutting parameters were analyzed. Experimental results suggested that increasing cutting speed would engender thermal softening, which would in return affect the cutting force and surface roughness in high speed milling. The cutting force and surface roughness were affected by cutting depth and feed rate obviously. Surface roughness was also affected by cutting width which changed the cutting force slightly. According to the results, proper parameters could be selected and thermodynamic relationship needed to be discussed for further research.


2013 ◽  
Vol 589-590 ◽  
pp. 76-81
Author(s):  
Fu Zeng Wang ◽  
Jun Zhao ◽  
An Hai Li ◽  
Jia Bang Zhao

In this paper, high speed milling experiments on Ti6Al4V were conducted with coated carbide inserts under a wide range of cutting conditions. The effects of cutting speed, feed rate and radial depth of cut on the cutting forces, chip morphologies as well as surface roughness were investigated. The results indicated that the cutting speed 200m/min could be considered as a critical value at which both relatively low cutting forces and good surface quality can be obtained at the same time. When the cutting speed exceeds 200m/min, the cutting forces increase rapidly and the surface quality degrades. There exist obvious correlations between cutting forces and surface roughness.


2016 ◽  
Vol 840 ◽  
pp. 315-320 ◽  
Author(s):  
Afifah Mohd Ali ◽  
Norazharuddin Shah Abdullah ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The purpose of this research is to find the effects of cutting speed on the performance of the ZTA ceramic cutting tool. Three types of ZTA tools used in this study which are ZTA-MgO(micro), ZTA-MgO(nano) and ZTA-MgO-CeO2. Each of them were fabricated by wet mixing the materials, then dried at 100°C before crushed into powder. The powder was pressed into rhombic shape and sintered at 1600°C at 4 hours soaking time to yield dense body. To study the effect of the cutting speed on fabricated tool, machining was performed on the stainless steel 316L at 1500 to 2000 rpm cutting speed. Surface roughness of workpiece was measured and the tool wears were analysed by using optical microscope and Matlab programming where two types of wear measured i.e. nose wear and crater wear. Result shows that by increasing the cutting speed, the nose wear and crater wear increased due to high abrasion. However, surface roughness decreased due to temperature rise causing easier chip formation leaving a good quality surface although the tool wear is increased.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


Author(s):  
Yu Su ◽  
Congbo Li ◽  
Guoyong Zhao ◽  
Chunxiao Li ◽  
Guangxi Zhao

The specific energy consumption of machine tools and surface roughness are important indicators for evaluating energy consumption and surface quality in processing. Accurate prediction of them is the basis for realizing processing optimization. Although tool wear is inevitable, the effect of tool wear was seldom considered in the previous prediction models for specific energy consumption of machine tools and surface roughness. In this paper, the prediction models for specific energy consumption of machine tools and surface roughness considering tool wear evolution were developed. The cutting depth, feed rate, spindle speed, and tool flank wear were featured as input variables, and the orthogonal experimental results were used as training points to establish the prediction models based on support vector regression (SVR) algorithm. The proposed models were verified with wet turning AISI 1045 steel experiments. The experimental results indicated that the improved models based on cutting parameters and tool wear have higher prediction accuracy than the prediction models only considering cutting parameters. As such, the proposed models can be significant supplements to the existing specific energy consumption of machine tools and surface roughness modeling, and may provide useful guides on the formulation of cutting parameters.


2013 ◽  
Vol 773-774 ◽  
pp. 339-347 ◽  
Author(s):  
Muhammad Yusuf ◽  
M.K.A. Ariffin ◽  
N. Ismail ◽  
S. Sulaiman

With increasing quantities of applications of Metal Matrix Composites (MMCs), the machinablity of these materials has become important for investigation. This paper presents an investigation of surface roughness and tool wear in dry machining of aluminium LM6-TiC composite using uncoated carbide tool. The experiments carried out consisted of different cutting models based on combination of cutting speed, feed rate and depth of cut as the parameters of cutting process. The cutting models designed based on the Design of Experiment Response Surface Methodology. The objective of this research is finding the optimum cutting parameters based on workpiece surface roughness and cutting tool wear. The results indicated that the optimum workpiece surface roughness was found at high cutting speed of 250 m min-1 with various feed rate within range of 0.05 to 0.2 mm rev-1, and depth of cut within range of 0.5 to 1.5 mm. Turning operation at high cutting speed of 250 m min-1 produced faster tool wear as compared to low cutting speed of 175 m min-1 and 100 m min-1. The wear minimum (VB = 42 μm ) was found at cutting speed of 100 m min-1, feet rate of 0.2 mm rev-1, and depth of cut of 1.0 mm until the length of cut reached 4050 mm. Based on the results of the workpiece surface roughness and the tool flank wear, recommended that turning of LM6 aluminium with 2 wt % TiC composite using uncoated carbide tool should be carried out at cutting speed higher than 175 m min-1 but at feed rate of less than 0.05 mm rev-1 and depth of cut less than 1.0 mm.


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


Sign in / Sign up

Export Citation Format

Share Document