Dynamical Research on a Micro-Displacement Actuator Based on V-Type Guide-Way

2011 ◽  
Vol 305 ◽  
pp. 330-334
Author(s):  
Ji Jie Ma ◽  
Jian Ming Wen ◽  
Ping Zeng ◽  
Jun Wu Kan ◽  
Zhong Hua Zhang

A new type of the micro-displacement device based on V-shaped groove by using piezoelectric stack as the driver was presented. The performance characteristic of the driving device was introduced and its working mechanism was discussed. the dynamic formulation of inertial actuator is established, by using matlab software, the kinetic simulation of the actuator is carried out, the structure of newly inertial actuator is designed and manufactured. The simulation and experiment of the actuator is conducted. The simulation results agree well with the experimental results indicates that the simple associated symmetry electrical signal can provide stable stepping movement, the speed of 0.5mm/s, high resolution of 1μm, maximum loading capacity of 600g.

2014 ◽  
Vol 1016 ◽  
pp. 14-18
Author(s):  
Xian Wei Liu ◽  
Jia Sheng Wang ◽  
Lan Tao Wu ◽  
Xin Zhang ◽  
Hua Cheng

Based on air cushion belt conveyor, a new type of belt conveyor named water cushion belt conveyor is proposed. It has a wide scope of applications for its features such as stability and reliability, capability of full load start-up, and environment-friendliness. This paper studies the working mechanism and lubricating mechanism of the water cushion belt conveyor. The basic lubrication equation of the water cushion is deduced from the universal form of the Reynolds equation used to study the pressure film properties of the water cushion. The design of the key part of the water cushion device is described in details. The research can be taken as a reference in practical applications.


Author(s):  
Ceng He ◽  
Yuqi Wang ◽  
Jing Song ◽  
Shanshan Li ◽  
Fusheng Yang ◽  
...  

Abstract Metal hydride is an influential and promising material for hydrogen utilization. Researchers have carried out a large number of studies on hydrogen storage apparatus, and developed a few new devices for its promotion. Unfortunately, for most metal hydride reactors, the hydrogenation and dehydrogenation are two independent processes owing to the different required conditions, which could cause many inconveniences and safety problems to the H2 absorption & desorption cycle with high frequency and intensity. Hence we proposed a new type of autoswitch H2 absorption & desorption device based on the structure improvement, which consists of rotation disc, fixed disc and the reactor. The numerical simulation for H2 absorption/desorption using LaNi5 was accomplished, and the optimizations on both structure and operation conditions were achieved within a certain period of cycle time. Simulation results show when the single cycle time is set to 1600 s, the absorption temperature has to be lower than 45 °C (3 MPa) and pressure higher than 1.28 MPa (20 °C), and the desorption temperature should be higher than 41 °C (0.1 MPa) and pressure lower than 0.48 MPa (80 °C) under the same cycle time. Meanwhile, the effects of reaction finish time, operating temperature and H2 pressure during absorption/desorption process was investigated and simulation data were also fitted to develop the structural optimization. Under the hydrogenation/dehydrogenation conditions of 3 MPa (20 °C)/0.1 MPa (80 °C), the simulation results indicate the optimal initial reacted fraction and total cycle time are 0.07 and 1287 s, respectively. Moreover, both structures of autoswitch device with 4 and 6 openings have been optimized to satisfy the requirement of each stage. The autoswitch H2 absorption & desorption device can realize the automatic switch between hydrogenation and dehydrogenation orderly and controllably, which would provide convenience for the occasions with this demand and show its remarkable value during popularization and application.


2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


2021 ◽  
Author(s):  
Shishuai Dang ◽  
Zhengwei Huang ◽  
Ying Huang ◽  
Xin Pan ◽  
Chuanbin Wu

<p>Lipid-based nanoparticles (LBNs) are a new type of nanoparticulate drug delivery system, which have been gradually shown broad prospects in pulmonary drug delivery systems. However, the main disadvantage of these LBNs for inhalable drugs with limited lipophilicity is the low encapsulation capacity. Herein, this study anticipates establishing a technology platform to improve the loading capacity of low lipophilicity drugs in LBNs, for the therapy of lung diseases. A proof-of-concept was carried out using Beclomethasone dipropionate (BDP) as a model drug. BDP was conjugated with stearic acid (SA), a kind of the lipid matrix for LBN. The conjugate was characterized and the interactions between the conjugate and SA were investigated by molecular dynamics simulation. It is expected that the drug loading capacity of weak-lipophilic drugs in LBN can be increased by establishing the technology platform, and the application of LBNs in pulmonary delivery can be broadened.</p>


2012 ◽  
Vol 466-467 ◽  
pp. 981-985 ◽  
Author(s):  
Xin Yun Qiu ◽  
Yuan Gao

An adaptive PID controller based on single neuron is proposed. The properties, control algorithm, parameters tuning, the control law and the application condition of the controller are studied in the paper. To satisfy the properties of the requirements of the control system in an electromotor group, such as a broad dynamic changing range, a fast response, a little overshoot and time-variable parameter, a new-type self-optimizing PID controller based on artificial neural networks is proposed and studied. It is verified that the controller has few adjustable parameters and excellent robust performance. The results of simulation and experiment prove that the controller is superior to the traditional PID controller.


2021 ◽  
Author(s):  
Zhenghui Ge ◽  
Wangwang Chen ◽  
Yongwei Zhu

Abstract Casing parts are regarded as one of the key components in aero-engine components. Most casing parts are attached with different shapes of convex structures, and their heights range from hundreds of microns to tens of millimeters. The use of profiling blocky electrodes for electrochemical machining of casing parts is a widely used method, especially in the processing of high convex structures. However, with the increase of convex structure height, the flow field of machining areas will become more complex, and short circuits may occur at any time. In this study, a method to improve the flow field characteristics of machining area by adjusting the backwater pressure is proposed, the simulation and experiment are carried out respectively. The simulation results showed that the back-pressure mehtod can significantly improve the uniformity of the flow field around the convex structure compared with the extraction outlet mode and the open outlet mode, and then the optimized back-pressure of 0.5 MPa was obtained according to simulation results. The experimental results showed that under condition of the optimized back-pressure parameters, the cathode feed-rate increased from 0.6 mm/min to 0.8 mm/min, and the convex structure with a height of 18 mm was successfully machined. This indicated that the back-pressure method is suitable and effective for the electrochemical machining of high convex structure with blocky electrode.


2014 ◽  
Vol 978 ◽  
pp. 94-100
Author(s):  
Yi Ping Li

Analyzed and studied the hydro-pneumatic buffer structure of railway vehicle, designed a new type of hydro-pneumatic buffer and established the detailed dynamics model. Calculated the static characteristic curve of hydro-pneumatic buffer with different compression rate and dynamic characteristic curve with different impact speed through the numerical simulation method. The simulation results shows that the biggest impedance force is 1836.3KN and buffer capacity reach 221.89KJ when impact velocity of the new hydro-pneumatic buffer is 5m/s.New hydro-pneumatic buffer can improve the speed of manipulating vehicle, reduce the longitudinal impact and vibration in the train and adapt to the needs of the trains.


2013 ◽  
Vol 579-580 ◽  
pp. 804-807
Author(s):  
Zhong Yao Wu ◽  
Tian Feng Zhao ◽  
Jian Bo Cao ◽  
Shi Ju E ◽  
Chun Xiao Chen

Dielectric elastomer is a kind of electroactive polymer material with optimal performance. As actuator material, dielectric elastomer has shown a good prospect. Based on studying the principle of electroactive polymer, a new type of cylindrical actuator was designed. Its 3-D figure and 2-D dimension drawing was finished by UG software. The animation simulation of the actuator was studied. The simulation results verified the feasibility of design scheme. Electroactive polymer will have broad application prospects in the field of actuator.


2012 ◽  
Vol 472-475 ◽  
pp. 2760-2765
Author(s):  
Hao Bin Jiang ◽  
Ying Jun Du ◽  
Shen Chen Ye

The design scheme of a new type strut was put forward, whose stiffness characteristics can undertake linkage control. The structure and basic principle of this new suspension component were introduced. According to fluid mechanics and thermodynamics, a mathematical model for the stroke dependent stiffness characteristics of the strut was established, and the stiffness characteristics were analyzed by using software SIMULINK. Then the stiffness performance bench test of the strut specimen was carried out for verification. Results show that the test results agree well with the simulation results. It is verified that the established mathematical model is correct and the stiffness of this strut shows nonlinear changes vary with the displacement of piston. When the suspension is largely impacted, the stiffness of this strut increases quickly which could restrain the wheel bouncing, body roll and vertical vibration.


Sign in / Sign up

Export Citation Format

Share Document