Design for New Actuator Based on Electroactive Polymer

2013 ◽  
Vol 579-580 ◽  
pp. 804-807
Author(s):  
Zhong Yao Wu ◽  
Tian Feng Zhao ◽  
Jian Bo Cao ◽  
Shi Ju E ◽  
Chun Xiao Chen

Dielectric elastomer is a kind of electroactive polymer material with optimal performance. As actuator material, dielectric elastomer has shown a good prospect. Based on studying the principle of electroactive polymer, a new type of cylindrical actuator was designed. Its 3-D figure and 2-D dimension drawing was finished by UG software. The animation simulation of the actuator was studied. The simulation results verified the feasibility of design scheme. Electroactive polymer will have broad application prospects in the field of actuator.

2021 ◽  
Vol 248 ◽  
pp. 02038
Author(s):  
Hongzhu Xu ◽  
Changbo Li ◽  
Shuo Wang ◽  
Guozheng Zhao ◽  
Hui Liang ◽  
...  

Catalytic persulfate technology is a new type of catalytic technology that has been extensively studied in recent years. Among them, the new copper and silver materials synthesized by microwave assist have broad application prospects and are a class of catalysts with excellent performance, environmental friendliness, and stable structure. This article introduces a new type of material loaded with metal copper and silver and activated carbon, analyzes the mechanism of catalytic oxidation, and focuses on summarizing the influencing factors, degradation mechanism, and potential pollutant degradation pathways of this new type of material in water treatment.


2014 ◽  
Vol 945-949 ◽  
pp. 347-350
Author(s):  
Yu Xin Zhao ◽  
Min De Shen ◽  
Xue Hui Shen

In order to minimize the friction when the linear motion unit in the movement, the new type unit based on permanent magnet was designed. The Halbach Array magnet structure was adopted in the unit. It can realize the stable suspension with the combination of gravitation and repulsion. The new type units have good performance and broad application prospects.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1075
Author(s):  
Wenqi Wang ◽  
Guanguan Ren ◽  
Ming Zhou ◽  
Wei Deng

Dielectric elastomer (DE) is a type of electric field type electroactive polymer material that can produce greater deformation under the action of an electric field and has a faster recovery speed. It has the advantages of high energy density, large strain, low quality, and commercialization, and has become the most widely concerned and researched electroactive polymer material. In this study, copper calcium titanate (CCTO) particles with a large dielectric constant were selected as the filling phase, and a silicone rubber (PDMS) with better biocompatibility and lower elastic modulus was used as the matrix to prepare CCTO/PDMS, which is a new type of dielectric elastomer material. The structure of the dielectric elastomer is analyzed, and its mechanical properties, dielectric properties, and driving deformation are tested. Then, KH550, KH560, and KH570 modified CCTO is used in order to improve the dispersibility of CCTO in PDMS, and modified particles with the best dispersion effect are selected to prepare dielectric elastomer materials. In addition, mechanical properties, dielectric properties, and driving deformation are tested and compared with the dielectric elastomer material before modification. The results show that as the content of CCTO increases, the dielectric constant and elastic modulus of the dielectric elastomer also increase, and the dielectric loss remains basically unchanged at a frequency of 100 Hz. When the filling amount reaches 20 wt%, the dielectric constant of the CCTO/PDMS dielectric elastomer reaches 5.8 (100 Hz), an increase of 120%, while the dielectric loss at this time is only 0.0038 and the elastic modulus is only 0.54 MPa. When the filling amount is 5 wt%, the dielectric elastomer has the largest driving deformation amount, reaching 33.8%. Three silane coupling agents have been successfully grafted onto the surface of CCTO particles, and the KH560 modified CCTO has the best dispersibility in the PDMS matrix. Based on this, a modified CCTO/PDMS dielectric elastomer was prepared. The results show that the improvement of dispersibility improves the dielectric constant. Compared with the unmodified PDMS, when the filling content is 20 wt%, the dielectric constant reaches 6.5 (100 Hz). Compared with PDMS, it has increased by 150%. However, the improvement of dispersion has a greater increase in the elastic modulus, resulting in a decrease in its strain parameters compared with CCTO/PDMS dielectric elastomers, and the electromechanical conversion efficiency has not been significantly improved. When the filling amount of modified CCTO particles is 5 wt%, the dielectric elastomer has the largest driving deformation, reaching 27.4%.


2022 ◽  
Author(s):  
Shuaishuai Yu ◽  
Zhiting Wei ◽  
Junxiao Wu ◽  
Tianli Wang ◽  
Jia Zhang ◽  
...  

Nowadays, near-infrared (NIR) -emitting luminescence materials with broad application prospects have drawn great attention. SrGa12O19: Cr3+ is a new type of solid light source material that emits NIR light with...


2013 ◽  
Vol 690-693 ◽  
pp. 3441-3448
Author(s):  
Shun Nian Yu ◽  
Qin Cheng Yang

The new type massage device designed is composed of gearing with groove cam mechanism, executive links with double-rocker mechanism, rate adjustment device with bolts, slider and compression springs. The device, which can simulate massage to remove fatigue by adding functions such as heating and magnetic, has broad application prospects. Structures of the massage device, kinematic analysis and the dynamic simulation have been introduced and the parameters on the effect of massage range have been studied in this paper. A prototype device has been made according to the results of the study. It has good massage effect.


2011 ◽  
Vol 383-390 ◽  
pp. 1671-1676
Author(s):  
Ming Feng ◽  
Wei Xing ◽  
Jun Wei Lian ◽  
Guang Rong Yan

The Variable Torque Slipping Clutch with Skewed Rollers is a new type of power transmission component, which combines both clutch and bearing functions, and has broad application prospects in industrial products. This paper describes its configuration, operating principle and characteristics. The present situation of its study and application at home and abroad and key issues needed to be further studied are also introduced.


2013 ◽  
Vol 423-426 ◽  
pp. 1001-1005
Author(s):  
Lin Ping Yu ◽  
Zhi Yun Wang

With soil-rock mixture (SRM) as the object of study and compaction test as the means, the paper studies the compactability of the SRM and analyzes the compactability influencing factors and engineering properties after compaction. Studies show that the soil engineering properties of compacted SRM are greatly improved, so it is a building material with broad application prospects.


Author(s):  
Ceng He ◽  
Yuqi Wang ◽  
Jing Song ◽  
Shanshan Li ◽  
Fusheng Yang ◽  
...  

Abstract Metal hydride is an influential and promising material for hydrogen utilization. Researchers have carried out a large number of studies on hydrogen storage apparatus, and developed a few new devices for its promotion. Unfortunately, for most metal hydride reactors, the hydrogenation and dehydrogenation are two independent processes owing to the different required conditions, which could cause many inconveniences and safety problems to the H2 absorption & desorption cycle with high frequency and intensity. Hence we proposed a new type of autoswitch H2 absorption & desorption device based on the structure improvement, which consists of rotation disc, fixed disc and the reactor. The numerical simulation for H2 absorption/desorption using LaNi5 was accomplished, and the optimizations on both structure and operation conditions were achieved within a certain period of cycle time. Simulation results show when the single cycle time is set to 1600 s, the absorption temperature has to be lower than 45 °C (3 MPa) and pressure higher than 1.28 MPa (20 °C), and the desorption temperature should be higher than 41 °C (0.1 MPa) and pressure lower than 0.48 MPa (80 °C) under the same cycle time. Meanwhile, the effects of reaction finish time, operating temperature and H2 pressure during absorption/desorption process was investigated and simulation data were also fitted to develop the structural optimization. Under the hydrogenation/dehydrogenation conditions of 3 MPa (20 °C)/0.1 MPa (80 °C), the simulation results indicate the optimal initial reacted fraction and total cycle time are 0.07 and 1287 s, respectively. Moreover, both structures of autoswitch device with 4 and 6 openings have been optimized to satisfy the requirement of each stage. The autoswitch H2 absorption & desorption device can realize the automatic switch between hydrogenation and dehydrogenation orderly and controllably, which would provide convenience for the occasions with this demand and show its remarkable value during popularization and application.


Author(s):  
N. Nurminen ◽  
A. Ellman ◽  
V. Jouppila ◽  
M. Paajanen ◽  
M. Karesoja

The electromechanical properties of elastomer material change when different levels of stretching are applied to the elastomer film. The generated stress and expansion of the EAP material depend on the electric field across the material and its relative permeability. Some of the best known commercial dielectric elastomer materials are based on acrylic elastomers, e.g. 3M VHB 4910 or 4905 adhesive tape. In this work, the VHB 4910 tape was used as a reference material for different types of acrylic nanoclay compound materials. These new type of nanoclay elastomer compounds were tested because the addition of clay into the elastomer was assumed to increase its actuating performance. Different voltage and pre-stretching levels were used in the measurements. Current-voltage characteristics and isometric stress measurements were used to study the energy efficiency, frequency dependent behavior, reactivity and isometric stress performance of the EAP materials. Based on the electromechanical characterization and material properties, a general hyperelastic material model was developed. According to the preliminary tests, the nanoclay compound seems to be a bit stiffer than VHB 4910 resulting in a greater isometric stress response.


2016 ◽  
Vol 12 (02) ◽  
pp. 20
Author(s):  
Haifeng Lin ◽  
Ruili Mao

The accumulator can store the energy in high capacity, and the super capacitor can charge and discharge in high power. The mixed power source composed by the accumulator and super capacitor not only has the characteristics for both of them but also meets the high-power requirement of high capacity and peak value. How to perform the equalizing charging for multiple power packs is a emphasis in the industry currently. On the basis of analysis for multiple equalizing charging methods, a new type of design scheme based on DC/DC and switch matrix is raised in this project, the thinking of intermittent charging mode is adopted and four BCAP0350 is served as the charging sample to perform the charging and discharging experiment as well as verify the composite charging design scheme is provided with the feasibility.


Sign in / Sign up

Export Citation Format

Share Document