Simulation Investigation the Effect of Heating-Lines on Tensile Mechanical Properties of Sheet Metal after Laser Scanning

2011 ◽  
Vol 314-316 ◽  
pp. 331-336 ◽  
Author(s):  
Wen Jiao Dan ◽  
Wei Gang Zhang

In this study, tensional mechanical properties of sheet metal with heating-lines after laser scanning are investigated based on the thermal-microstructure-mechanical model. The phase transformations, during laser scanning of sheet metal, are calculated by coupling the thermal history from finite element analysis with a phase transformation kinetic model. The flow stresses of material are obtained from the constitutive relationship of the phases based on the mixture strain hardening laws. The results show that the influence of the heating-lines number on tensional mechanical properties of material is obvious. The mechanical properties are related to the distribution of microstructure in heat affected zone after laser scanning.


2005 ◽  
Vol 129 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Yajun Fan ◽  
Zhishang Yang ◽  
Peng Cheng ◽  
Keith Egland ◽  
Lawrence Yao

In laser forming, phase transformations in the heat affected zone take place under steep cooling rates and temperature gradients, and have a significant affect on the laser forming process and final mechanical properties of products. In this work, phase transformations during laser forming of AISI 1010 steel are experimentally and numerically investigated and the transient volume fraction of each available phase is calculated by coupling the thermal history from finite element analysis with a phase transformation kinetic model. Consequently, the flow stresses of material are obtained from the constitutive relationship of the phases, and the laser forming process is modeled considering the effect of work hardening, recrystallization and phase transformation. A series of carefully controlled experiments are also conducted to validate the theoretically predicted results.



2013 ◽  
Vol 351-352 ◽  
pp. 782-785
Author(s):  
Yong Bing Liu ◽  
Xiao Zhong Zhang

Established the mechanical model of simply supported deep beam, calculation and analysis of simple supported deep beams by using finite element analysis software ANSYS, simulated the force characteristics and work performance of the deep beam. Provides the reference for the design and construction of deep beams.



2012 ◽  
Vol 476-478 ◽  
pp. 2463-2468 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Jun Yang

In this paper, a constitutive relationship of the concrete core restrained by L-Shaped steel tube is put forward based on referring to the constitutive relations of core concrete in concrete-filled square steel tube columns, which takes the restraint of steel tube to concrete as an equivalent confinable effect coefficient . Load-deformation relationship of L-Shaped concrete-filled steel tubular column subjected to axial compression is analyzed by finite element analysis (using ABAQUS software). The predicted load versus deformation relationship cures are in good agreement with those of tests based on the finite element analysis, loads carried by steel tubes and concrete respectively during the loading process, as well as interactions between them are analyzed. Finally, influences of length-width ratio and width-thickness ratio on the interaction between steel tubes and concrete are investigated.



Author(s):  
Richard Regueiro ◽  
Adam Blanchard ◽  
Kristin Constancio ◽  
Logan Williams

Understanding the mechanics of lens accommodation (ability of the eye dynamically to focus near to far, or far to near) can assist in the diagnosis of early presbyopia as well as identify potential clinical treatments and lens prosthetic implantation strategies [1–3]. Related to the mechanism of focusing, presbyopia is an ocular disease that stems from age-related loss of lens accommodation leading to a loss of focusing range and near vision [4]. This is attributed to changes in ciliary muscle function, as well as changes in the mechanical properties of the lens substance, lens capsule, and zonules, presumably. The precise relationship of these changes, however, is not well described. The location of the lens in the eye is shown in Fig.1 [5].



2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.



2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.



2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.



Sign in / Sign up

Export Citation Format

Share Document