Preparation and Characterization of BaTiO3/ PVDF Inorganic-Organic Composite Ultrafiltration Membranes

2011 ◽  
Vol 356-360 ◽  
pp. 2158-2161
Author(s):  
Ling Di Chen ◽  
Guo Xi Jin ◽  
Xiao Bo Wu ◽  
Wan Zhong Lang ◽  
Da Zhi Sun

Abstract.BaTiO3-PVDF(polyvinylidene fluoride) composite ultrafiltration membranes were prepared by a phase separation method.The surface and cross-section of the membranes were investigated by atomic force microscopy and scanning electron microscope.The results showed that the morphology of PVDF membrane can be disturbed by BaTiO3.Albumin bovine serum retention and the water flux of the blend membrane increase.The phenomenon is discussed in terms of the modification of spongy layer and finger-like structure in the blend polymer.

2011 ◽  
Vol 480-481 ◽  
pp. 691-696 ◽  
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shi Qi Guo ◽  
Ai Min Wang ◽  
Xiu Ju Wang ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The influence of blending ratio ( the mass ratio of PVDF and PAA), polymer concentration on preparation of blending modified hydrophilic PVDF ultrafiltration membranes were investigated, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of IR spectra, contact angle, scanning electron microscopy images, pure water flux and rejection. The results showed that hydrophilic ultrafiltration membrane could be prepared with PAA and PVDF blends, the hydrophilicity improved greatly, and it was better than traditional PVDF membrane.


2011 ◽  
Vol 295-297 ◽  
pp. 286-291
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shu Fang Hou ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
...  

Hydrophilic polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of maleic anhydride grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated, the preparation technical parameters were determined, and the hydrophilic PVDF flat membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of pure water flux, contact angle, infrared spectroscopic analysis and scanning electron microscope(SEM). The results showed that maleic anhydride had been grafted onto PVDF, and the hydrophilic performance of the modified membrane was better than the traditional one.


2013 ◽  
Vol 746 ◽  
pp. 390-393
Author(s):  
Qiong Zhi Gao ◽  
Hong Qiang Li ◽  
Xing Rong Zeng

In this study, polyvinylidene fluoride (PVDF) composite ultrafiltration membranes were prepared by a phase inversion method, N,N-dimethylacetamide (DMAc) was used as solvent and polyvinylpyrrolidone (PVP) was used as dispersant, nanoTiO2 and AgNO3 were used as addictive materials. With different doping content of nanoTiO2 and silver ions, those hybrid films have different functions and structure. The basic performance and photocatalytic properties of those ultrafiltration membranes were studied in detail. The experiment results show that adding nanosized TiO2 particles will make the porosity of PVDF membrane increase, adding silver ion with low content can not improve water flux and porosity of membranes, however, nanoTiO2 and silver ions doping together can effectively improve the photocatalytic degradation rate.


2021 ◽  
Vol 18 (4) ◽  
pp. 1338
Author(s):  
Amer Naji Al-Naemi ◽  
Mohammed Amer Abdul-Majeed ◽  
Mustafa H. Al-Furaiji ◽  
Inmar N Ghazi

Oily wastewater is one of the most challenging streams to deal with especially if the oil exists in emulsified form. In this study, electrospinning method was used to prepare nanofiberous polyvinylidene fluoride (PVDF) membranes and study their performance in oil removal. Graphene particles were embedded in the electrospun PVDF membrane to enhance the efficiency of the membranes. The prepared membranes were characterized using a scanning electron microscopy (SEM) to verify the graphene stabilization on the surface of the membrane homogeneously; while FTIR was used to detect the functional groups on the membrane surface. The membrane wettability was assessed by measuring the contact angle. The PVDF and PVDF / Graphene membranes efficiency was tested in separation of emulsified oil from aqueous solutions. The results showed that PVDF-Graphene nanofiber membrane exhibited better performance than the plain PVDF nanofiber membrane with average water flux of 210 and 180 L.m-2.h-1, respectively. Both membranes showed high oil rejection with more than 98%.


2011 ◽  
Vol 306-307 ◽  
pp. 1563-1568 ◽  
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shu Fang Hou ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
...  

Hydrophilic polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF flat membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of pure water flux, contact angle, infrared spectroscopic analysis and scanning electron microscope (SEM). The results showed that acrylic acid had been grafted onto PVDF, and the hydrophilic performance of the modified membrane was better than the traditional one.


MRS Advances ◽  
2018 ◽  
Vol 3 (44) ◽  
pp. 2719-2724
Author(s):  
D.L.P. Lacerda ◽  
F. Ptak ◽  
R. Prioli

AbstractAtomic force microscopy (AFM) and nanoindentation were used to characterize poly (methyl methacrylate) (PMMA) films with a wide distribution of pores. Pores with diameters ranging from tens of nanometers to few micrometers were measured by AFM and cross-section scanning electron microscopy (SEM). Atomic force acoustic microscopy (AFAM) mapping of the elastic modulus were correlated with the samples topography and pore distribution. The elastic moduli of the samples were additionally measured by nanoindentation.


2019 ◽  
Vol 72 (6) ◽  
pp. 425 ◽  
Author(s):  
Pengzhi Bei ◽  
Hongjing Liu ◽  
Hui Yao ◽  
Yang Jiao ◽  
Yuanyuan Wang ◽  
...  

In order to enhance the hydrophobicity of polyvinylidene fluoride (PVDF) porous membranes, the blending of PVDF with a hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was carried out. The modified PVDF membranes with [Bmim][PF6] were fabricated through a non-solvent induced phase inversion using lithium chloride as a porogen in the PVDF casting solution. The effects of [Bmim][PF6] on the membrane characteristics were investigated. FT-IR analysis indicates that the IL is successfully retained by the PVDF membrane. Thermogravimetric analysis reveals that the optimum temperature of the modified membrane is below 300°C. Scanning electron microscopy pictures show that modified membranes have more homogeneous and larger diameter pores with a mean pore size of 0.521µm and porosity of 78%. By measuring the IL leaching during the membrane fabrication, it was found that the modified membrane does not lose IL. Atomic force microscopy shows that the roughness of the modified membrane surface increases slightly, but the contact angle of the modified membrane increases significantly from 88.1° to 110.1°. The reason for this is that the fluorine-containing IL has a low surface energy, which can enhance the hydrophobicity of the membrane. Finally, by comparing modified membranes with different IL concentrations, we draw a conclusion that the modified membrane with an IL concentration of 3 wt-% has the best properties of pore size, porosity, and hydrophobicity.


2012 ◽  
Vol 711 ◽  
pp. 141-148 ◽  
Author(s):  
Filippo Giannazzo ◽  
Martin Rambach ◽  
Wielfried Lerch ◽  
Corrado Bongiorno ◽  
Salvatore di Franco ◽  
...  

We present a nanoscale morphological and structural characterization of few layers of graphene grown by thermal decomposition of off-axis 4H-SiC (0001). A comparison between transmission electron microscopy (TEM) in cross-section and in plan view allows to fully exploit the potentialities of TEM. Such a comparison was used to get information on the number of graphene layers as well as on the rotational order between the layers and with respect to the substrate. Some peculiar structures observed by TEM (wrinkles) could only be systematically measured by atomic force microscopy (AFM). In particular, the density and the height of the wrinkles in the few layers of graphene was investigated.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document