Preparation and Characterization of a PVDF Membrane Modified by an Ionic Liquid

2019 ◽  
Vol 72 (6) ◽  
pp. 425 ◽  
Author(s):  
Pengzhi Bei ◽  
Hongjing Liu ◽  
Hui Yao ◽  
Yang Jiao ◽  
Yuanyuan Wang ◽  
...  

In order to enhance the hydrophobicity of polyvinylidene fluoride (PVDF) porous membranes, the blending of PVDF with a hydrophobic ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) was carried out. The modified PVDF membranes with [Bmim][PF6] were fabricated through a non-solvent induced phase inversion using lithium chloride as a porogen in the PVDF casting solution. The effects of [Bmim][PF6] on the membrane characteristics were investigated. FT-IR analysis indicates that the IL is successfully retained by the PVDF membrane. Thermogravimetric analysis reveals that the optimum temperature of the modified membrane is below 300°C. Scanning electron microscopy pictures show that modified membranes have more homogeneous and larger diameter pores with a mean pore size of 0.521µm and porosity of 78%. By measuring the IL leaching during the membrane fabrication, it was found that the modified membrane does not lose IL. Atomic force microscopy shows that the roughness of the modified membrane surface increases slightly, but the contact angle of the modified membrane increases significantly from 88.1° to 110.1°. The reason for this is that the fluorine-containing IL has a low surface energy, which can enhance the hydrophobicity of the membrane. Finally, by comparing modified membranes with different IL concentrations, we draw a conclusion that the modified membrane with an IL concentration of 3 wt-% has the best properties of pore size, porosity, and hydrophobicity.

2011 ◽  
Vol 356-360 ◽  
pp. 2158-2161
Author(s):  
Ling Di Chen ◽  
Guo Xi Jin ◽  
Xiao Bo Wu ◽  
Wan Zhong Lang ◽  
Da Zhi Sun

Abstract.BaTiO3-PVDF(polyvinylidene fluoride) composite ultrafiltration membranes were prepared by a phase separation method.The surface and cross-section of the membranes were investigated by atomic force microscopy and scanning electron microscope.The results showed that the morphology of PVDF membrane can be disturbed by BaTiO3.Albumin bovine serum retention and the water flux of the blend membrane increase.The phenomenon is discussed in terms of the modification of spongy layer and finger-like structure in the blend polymer.


2000 ◽  
Vol 39 (Part 1, No. 6B) ◽  
pp. 3711-3716 ◽  
Author(s):  
Hatsuki Shiga ◽  
Yukako Yamane ◽  
Etsuro Ito ◽  
Kazuhiro Abe ◽  
Kazushige Kawabata ◽  
...  

2020 ◽  
Vol 22 (48) ◽  
pp. 28191-28201
Author(s):  
Georgia A. Pilkington ◽  
Rebecca Welbourn ◽  
Anna Oleshkevych ◽  
Seiya Watanabe ◽  
Patricia Pedraz ◽  
...  

The influence of ambient levels of water on the electroresponsive interfacial structuring and nanofriction of ionic liquid lubricant mixtures has been investigated by neutron reflectivity and atomic force microscopy.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


1992 ◽  
Vol 46 (1) ◽  
pp. 167-178 ◽  
Author(s):  
A. K. Fritzsche ◽  
A. R. Arevalo ◽  
M. D. Moore ◽  
C. J. Weber ◽  
V. B. Elings ◽  
...  

2013 ◽  
Vol 464 ◽  
pp. 9-13 ◽  
Author(s):  
Zan Li ◽  
Xia Wang ◽  
Ying Li ◽  
Wei Chain ◽  
Jiao Jiao Hu

Fluorinated polyurethanes (FPU) was prepared using fluorinated polyether polyol (FPO) as the soft segment, 4,4`-diphenylmethane diisocyanate (MDI) as the hard segment, 1,4-butanodiol (BDO) as the chain extender and catalysts. Tin metal catalysts were used to catalyze the polyurethane reaction of polyether polyols and isocyanate. The effect of different catalysts including stannous octoate (T-9) and dibutyltindalautrate (DBTDL) on the structure, surface properties and thermal properties of FPU was studied. The structural elucidation of the synthesized FPU was performed by Fourier transform infrared (FT-IR) and discovered that with decreasing catalyst efficiency or without catalyst, the strength of hydrogen bounds were enhanced. The FPU films surface was characterized by contact angle (CA) and atomic force microscopy (AFM) and it was found that the phase separation was increasing with increasing catalyst efficiency. The thermal property was exhibited by Thermo gravimetric (TG) and showed that joining catalyst improved stability significantly.


2018 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Romaya Sitha Silitonga ◽  
Nurul Widiastuti ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed that the modified membrane has a peak at 1655 cm-1, indicating the imine group (–N=C)- that was formed due to the crosslink between amine group from chitosan and aldehyde group from glutaraldehyde. Results showed that the contact angle of the modified membrane decreases to 77.22° indicated that the membrane hydrophilic properties (< 90°) were enhanced. Prior to the modification, the contact angle of the PVDF membrane was 90.24°, which shows hydrophobic properties (> 90°). The results of porosity, Ɛ (%) for unmodified PVDF membrane was 55.39%, while the modified PVDF membrane has a porosity of 81.99%. Similarly, by modifying the PVDF membrane, pure water flux increased from 0.9867 L/m2h to 1.1253 L/m2h. The enhancement of porosity and pure water flux for the modified PVDF membrane was due to the improved surface hydrophilicity of PVDF membrane.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Fanny Rivera ◽  
Raúl Muñoz ◽  
Pedro Prádanos ◽  
Antonio Hernández ◽  
Laura Palacio

Ammonia recovery from synthetic and real anaerobic digestates was accomplished using hydrophobic flat sheet membranes operated with H2SO4 solutions to convert ammonia into ammonium sulphate. The influence of the membrane material, flow rate (0.007, 0.015, 0.030 and 0.045 m3 h−1) and pH (7.6, 8.9, 10 and 11) of the digestate on ammonia recovery was investigated. The process was carried out with a flat sheet configuration at a temperature of 35 °C and with a 1 M, or 0.005 M, H2SO4 solution on the other side of the membrane. Polytetrafluoroethylene membranes with a nominal pore radius of 0.22 µm provided ammonia recoveries from synthetic and real digestates of 84.6% ± 1.0% and 71.6% ± 0.3%, respectively, for a membrane area of 8.6 × 10−4 m2 and a reservoir volume of 0.5 L, in 3.5 h with a 1 M H2SO4 solution and a recirculation flow on the feed side of the membrane of 0.030 m3 h−1. NH3 recovery followed first order kinetics and was faster at higher pHs of the H2SO4 solution and recirculation flow rate on the membrane feed side. Fouling resulted in changes in membrane surface morphology and pore size, which were confirmed by Atomic Force Microscopy and Air Displacement Porometry.


Sign in / Sign up

Export Citation Format

Share Document