Stability Test on Aluminum Alloy Round Pipe for Structure

2011 ◽  
Vol 368-373 ◽  
pp. 253-257
Author(s):  
Yong Tao Gao ◽  
Ting He ◽  
Peng Bin Fu

For the aluminum alloy pipe stable form and buckling capacity, axis compressing test for 4 sections which each specification in three members, total 36 members, thus, we work out the ultimate bearing capacity for a little slenderness ratio alloy round pipe and relation between slenderness ratio and coefficient of stability, to provide test data for drawing pillars curve of the same type member. Through observed aluminum alloy compressing member changing with test process, record test phenomenon, and combined with instruments of test data record, providing the basis for further theoretical analysis.

2016 ◽  
Vol 847 ◽  
pp. 38-45
Author(s):  
Xian Yan Zhou ◽  
Dan Zeng ◽  
Zhi Feng Wang

At present, the relevant researches of Glulam columns in China are mainly restricted to short columns. In order to study the mechanical properties of long columns under axial loading, an experimental study on five different slenderness ratios of Larch Glulam columns was carried out. With slenderness ratio changing, the variations of experimental data such as axial strain, lateral deflection at mid-height, ultimate bearing capacity, and peak strain were comparatively analyzed. The failure pattern and failure mechanism of long columns were discussed. The results indicate that the ultimate bearing capacity of Larch Glulam columns gradually decreases as the slenderness radio increases and the failure mode is gradually converted from strength failure to instability failure. The ultimate load reduction factor is obtained by regression analysis based on the experiment results of Larch Glulam short columns. The basis for design and application of Larch Glulam columns are provided.


2012 ◽  
Vol 594-597 ◽  
pp. 987-992
Author(s):  
Chun Lei Fan ◽  
Ji Ping Hao ◽  
Wei Feng Tian

Experiment on bearing capacity of 24 Q460 high strength angle steel for compression members attached by one leg shows: the ultimate bearing capacity of the experiment value are higher than the calculated of the “Design of Latticed Steel Transmission Structures” (ASCE10-1997), on the same section in different slenderness ratio of components, the larger slenderness ratio, the higher the ratio; while on the same slenderness ratio in different sections, the greater width-thickness radio, the greater the ratio. Based on this problem, analyzing the current standard, a set of formulas based on high-strength angle struts connected by single Limb was brought, which can used for the design of the Q460 high-strength angle.


2014 ◽  
Vol 664 ◽  
pp. 175-181 ◽  
Author(s):  
Zhi Juan Rong ◽  
Xue Ming Wang ◽  
Bao Hua Lv ◽  
Xin Yue Zhang ◽  
Ling Zhang

The aim of this paper is to study the ultimate bearing capacity of steel tubular transmission tower’s joint with annular plate based on the theoretical analysis. A simplified model of annular plate joints was performed to investigate the force distribution of the tube-gusset joints. To obtain the state of stress and ultimate bearing capacity, the annular plate with clamped boundary condition on the inner edges and subjected to diametric loading is employed in this study by the direct integration and thin plate energy principle theory. Experiment and finite element analysis are carried out and the results show that both are the similar.


2011 ◽  
Vol 243-249 ◽  
pp. 268-273
Author(s):  
Qing Ma ◽  
Jin Song Lei ◽  
Wen Zhi Yin

Double-limb lipped channel section steel member is formed by connecting two single limb members with bolts in order to improve the buckling performance. In order to research the buckling form and ultimate bearing capacity of members with different slenderness ratios under axial load, nonlinear analysis of buckling performance is done to this kind of section using the finite element analysis software ANSYS. The influence on bearing capacity caused by height-breadth ratio of section, height-thickness ratio of web and breadth-thickness ratio of flange is analyzed. The results show that: (1) for larger slenderness ratio, complete buckling occurs to the column mainly and the slenderness ratio has larger influence on buckling bearing capacity, while for smaller slenderness ratio, local distortional buckling occurs more; (2) in a certain range, the increase of height-breadth ratio could raise the ultimate bearing capacity of member, but excessive height-breadth ratio would make the ultimate bearing capacity decrease, (3) the increase of both height-thickness ratio and breadth-thickness ratio would decrease the ultimate bearing capacity.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
GuoQi Xing ◽  
ChangJiang Liu ◽  
ShanShan Li ◽  
Wei Xuan

In this paper, monotonic horizontal loading tests were carried out to study the bearing capacity of the cone-shaped foundation in marine fine sand. With load-controlled methods, the horizontal load was applied to the rod of cone-shaped foundation at loading eccentricity ratios of 5.0, 6.0, and 7.0. In addition, theoretical analysis was used to investigate the horizontal ultimate bearing capacity, and finite element analysis was also used in this paper to investigate the influence factors of the bearing capacity of cone-shaped foundation. Based on the theoretical analysis, the formula for horizontal ultimate bearing capacity was deduced. Test results show that, at the same loading eccentricity, cone-shaped foundation can provide higher H-M bearing capacity as well as lower lateral deflection compared to regular circular foundation for wind turbines. In addition, the deflection-hardening behavior of load-deflection curve for cone-shaped foundation is also observed. Numerical analysis results show that the H-M bearing capacity of the cone-shaped foundation increases with increasing aspect ratio and buried depth, however, and decreases with increasing loading eccentricity. Based on the results from finite element analyses, several equations to calculate the maximum moment bearing capacities are put forward, which take the aspect ratio, loading eccentricity, and embedded depth into account.


2011 ◽  
Vol 415-417 ◽  
pp. 1421-1426
Author(s):  
Xu Hong Zhang ◽  
Quan Quan Guo

The improvement effect of the external concrete to stability of the core steel-tube was demonstrated by the steel-tube replacement ratio through experimental study. The test results show that, with the steel-tube replacement ratio increasing, the ultimate bearing capacity of composite columns increased correspondingly, and the ductility of composite columns was improved obviously also. Therefore, the steel-tube replacement ratio should be involved in the formula for calculating the ultimate bearing capacity of composite columns. By finite element method and regression analysis, the slenderness ratio is amended by the steel-tube replacement ratio and the calculation results of the eccentric compression bearing capacity agreed well with the test results.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Feng Yu ◽  
Jie Song ◽  
Shuangshuang Bu ◽  
Jingfeng Wang ◽  
Haiying Wan ◽  
...  

To investigate the ultimate bearing capacity and deformation of the recycled self-compacting concrete-filled circular steel tubular (RSCCFCST) long columns subjected to axial load, nine specimens with different recycled self-compacting concrete (RSCC) strength grades and slenderness ratios are tested. The experimental results indicate that the lateral deflection dominates the buckling failure of the specimens. The ultimate bearing capacity of the specimens is enhanced gradually as the RSCC strength grade increases but decreases as the slenderness ratio rises. The load-strain curves are linear and basically coincide at the elastic stage. The decrease in the slenderness ratio or increase in the RSCC strength grade contributes to the improvement of the stiffness and ultimate circumferential and axial strains of the columns gradually. Based on the combined tangent modulus theory and bearing capacity of the RSCCFCST short columns, two estimation models are presented to predict the ultimate bearing capacity of the RSCCFCST long columns. Additionally, comparisons between the calculation results of the ultimate strength demonstrate that the prediction models established in this study are more accurate than the other specifications mentioned.


2011 ◽  
Vol 99-100 ◽  
pp. 166-169
Author(s):  
Yi Min Dai ◽  
Xu Guang Yan ◽  
Jing Chen ◽  
Xiang Jun Wang

Based on the test data of twelve push-out specimens with different holes filling different materials,the paper compared and analyzed the capacity and the corresponding slip value of the stud shear connector. The results show that, as to the two different kinds of holes shape ,the strength of the stud shear connectors of square push-out specimens was huger than that of circular specimens with the same condition; the strength of stud shear connectors in steel-concrete composite structure was decided by the strength of concrete surrounding the shear in the holes, with increasing concrete strength, the strength of stud shear connectors improved greatly; The outputs of this study are very useful for further understanding of the characteristics of the stud,it is also expected that the results presented in this paper should be valuable for the design of the composite beams.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2568
Author(s):  
Xuetao Lyu ◽  
Liqiang Zhang ◽  
Tong Zhang ◽  
Ben Li ◽  
Huan Li ◽  
...  

This paper adopts the method of steel tube wall thickness and strength reduction to simulate corrosion damage. The numerical model of the square concrete-filled steel tube long column (SCFST-LC) under eccentric compression after acid rain corrosion is established in the finite element software, ABAQUS. The reliability and accuracy of the model are verified by comparing it with published relevant experimental results. The failure mode, load-deformation curve, and ultimate compressive load were analysed. Following that, the impacts of section size, yield strength of the steel tube, axial compressive strength of concrete, steel ratio, slenderness ratio, and load eccentricity on its ultimate compressive load are comprehensively investigated. The results demonstrate that the ultimate compressive load of the SCFST-LC decreases significantly with the increase in corrosion rate. The corrosion rate increases from 10 to 40%, and the ultimate bearing capacity decreases by 37.6%. Its ultimate bearing capacity can be enhanced due to the increase in section size, material strength, and steel ratio. In contrast, the ascending slenderness ratio and load eccentricity has harmful effects on the ultimate compressive load of the specimens. Finally, a simplified formula for the axial compressive load of the SCFST-LC under eccentric compression after acid rain corrosion is proposed. The calculation accuracy is high and the deviation of the results is basically within 15%, which is in good agreement with the numerical simulation results.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 836
Author(s):  
Wudang Ying ◽  
Changgen Deng ◽  
Chenhui Zhang

The buckling of compression members may lead to the progressive collapse of spatial structures. Based on the sleeved compression member, the buckling monitoring member is introduced to control the buckling of compression member and raise buckling alert by sensing contact between the core tube and the restraining tube. Considering the rigid connection among the members in spatial structures, the buckling monitoring member with rigid ends needs to be further analyzed. An experimental test was conducted and finite element analyses were performed with calibrated finite element models. The results indicated that the ultimate bearing capacity and post-ultimate bearing capacity of the core tube were enhanced due to the restraint from the restraining tube. The contact was successfully sensed by pressure sensor, revealing that it sensed the buckling of the core tube. Parametric studies were conducted, indicating that the core protrusion, core slenderness ratio, the gap between the core tube and restraining tube, and the flexural rigidity ratio are the key parameters affecting the bearing capacity and the failure modes of the buckling monitoring member, and some key values of parameters were proposed to obtain good bearing capacity. Based on the parametric studies, the failure modes of buckling-monitoring members are summarized as global buckling and local buckling. The stress distribution and deformation mode of buckling monitoring members are presented in the non-contact, point-contact, line-contact, reverse-contact and ultimate bearing state. The buckling monitoring member is applied in a reticulated shell by substituting the buckling members. It can effectively improve the ultimate bearing capacity of reticulated shell.


Sign in / Sign up

Export Citation Format

Share Document