Investigating the Mechanical Properties of 0.5% Copper and 0.5% Nickel Austempered Ductile Iron with Different Austempering Parameters

2011 ◽  
Vol 383-390 ◽  
pp. 3313-3319 ◽  
Author(s):  
Bulan Abdullah ◽  
Siti Khadijah Alias ◽  
Ahmed Jaffar ◽  
Farisol Abd Rahim ◽  
Abdullah Ramli

The purpose of this research is to investigate the mechanical and corrosion characteristics of Ni-Cu alloyed Austempered Ductile Iron before and after austempering process. Specimens of ductile iron and 0.5% Cu-Ni ductile iron were produced through conventional CO2 sand casting method. The specimens were then austenitized at 9000C before austempered at 3500C at three different holding times which were 1 hour, 2 hours and 3 hours subsequently. The corrosion characteristics of newly developed material were obtained by means of polarization test and the mechanical testing involved tensile test (TS 138 EN1002-1), Rockwell hardness test and Charpy Impact test (ASTM E23). Density test as well as microstructure and SEM observations were also done to ductile iron and Cu-Ni alloyed ductile iron samples. All the testing was done to both as cast and austempered specimens. Addition of copper and Nickel was found to slightly increased the mechanical properties due to solid strengthening effect of Copper and Nickel. The results also indicated that austempering process at 1 hour gives the optimum mechanical properties in term of tensile strength and impact properties compared to other specimens. Increasing the austempering holding times to 2 hours and 3 hours, in contrast had resulted in decrement of the mechanical properties. There are however only slight improvement in hardness properties and no significant effect on density properties of the specimens.

2012 ◽  
Vol 576 ◽  
pp. 366-369 ◽  
Author(s):  
Siti Khadijah Alias ◽  
Bulan Abdullah ◽  
Ahmed Jaffar ◽  
Abdul Hakim Abdullah ◽  
Norhisyam Jenal

The studies emphasis on the development of niobium alloyed ductile iron with higher strength comparing to unalloyed ductile iron. 0.5wt% to 2wt% niobium were added into mixture of ductile iron casting containing pig iron, carburizer and steel scrap, and nodulized through 1.6wt% Fe-Si-Mg addition in CO2 sand casting process. Samples were then machined according to TS EN 10001 standards for tensile test and ASTM E23 for Charpy impact test. In addition, Rockwell hardness test was also performed. Microstructure observations were made after 2% Nital chemical etched and the phase structures were validated through XRD analysis. It was found that addition of niobium in ductile iron provide significant enhancement in mechanical properties when compared to unalloyed ductile iron. Addition of higher amount of niobium had further increased the strength and impact toughness properties. The enhancement of the mechanical properties is expected to further expand the applications of ductile iron.


2016 ◽  
Vol 851 ◽  
pp. 168-172
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
Tegar Rileh Argihono ◽  
Ryan Sutrisno

Mechanical and microstructure of double side weld with various angle groove was studied in this research. LR Gr A steel plates (12 mm thickness) were welded using GMAW with corresponding 180 A, 23 V, and 20 l/min respectively with current, voltage, and gas flow. Shielding gas and filler metals used are argon and ER 70S-6. The angle groove that used were 20⁰, 40⁰ and 60⁰. The measured of mechanical properties with regard to hardness, toughness and strength using, Vickers hardness test, Charpy impact test and tensile test respectively The microstructure examined with optical microscope. The results show that the highest hardness values found in welds with groove angle 40ͦ. The transition temperatures of weld metals are at temperatures between -20°C to 0°C. Weld metals with all variations of the groove angle has a value of less than 0.1 mmpy. Microstructure of base metals and HAZ were ferrite and pearlite. While the microstructure of weld metals are accicular ferrite, grain boundary ferrite and Widmanstatten ferrite.


MESIN ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Sulardjaka Sulardjaka ◽  
Yusuf Umardani ◽  
Agus Suprihanto

The metal casting is the most economical manufacturing process. It can make products with complex geometries in one process. Austempered Ductile Iron (ADI) is a cast iron product that has high prospects for application, because ADI has a high strength closed to forged iron. The purpose of this study is to investigate the effect of addition of Cu and Mo on mechanical properties and corrosion resistance of ADI. Cu is added with percentages of 0.5 and 1% by weight, while Mo is added by percentages of 0.3 and 0.6% by weight. The austempering process is conducted on salt bath temperture 350 <sup>o</sup>C for 4 hours. The results of the process were characterized by hardness test, tensile test and corrosion resistance. Hardness and tensile strength of ADI were tested by Brinell hardness test based on ASTM E10 and ASTM E8 repectively. Corrosion resistance of ADI was tested by immersion corrosion testing based on ASTM G31 standard.  The results of this study indicate that the addition of Cu element significantly increases the strength of ADI. The addition of Mo element inhibits graphite nodularity and not significantly increases the mechanical properties. Addition of Mo increases corrosion resistance due the amount of retained austenite.


2018 ◽  
Vol 919 ◽  
pp. 144-151 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Karolina Glogowska ◽  
Jaroslav Hájek ◽  
Jakub Fic

Reinforcing thermoplastic polymers with nanotubes or nanoplatelets to form nanocomposites is a way to increase the usage of polymeric materials in engineering applications by improving their mechanical properties. The contribution presents the results of research from basic processing and mechanical properties of nanocomposites. Low-Density Polyethylene (LDPE) was used as a matrix for experiments. The material LDPE was modified by Halloysite nanotubes (HNT) with a mass share of 2, 4, 6 wt% of the matrix. Nanocomposites were filled with 5 wt% Polyethylene grafted with maleic anhydride (PE-graft-MA) as a compatibilizer. The specimens were prepared by injection molding and their selected mechanical properties were tested by static tensile test, Charpy impact test and Shore hardness test.


2020 ◽  
Vol 12 (4) ◽  
pp. 531-537 ◽  
Author(s):  
Hyun-Joon Park ◽  
Byung-Wook Ahn ◽  
Jae-Ha Kim ◽  
Jong-Gun Lee ◽  
Seung-Boo Jung

AA6061-T4 composites containing SiC and B4C particles were fabricated by friction stir processing (FSP) with an SKD11 tool. The microstructures and mechanical properties of the composites were investigated with various test methods. With the inclusion of ceramic particles, refined grains in the stir zone (SZ) were observed using a scanning electron microscope (SEM) and tunneling electron microscope (TEM). Because the ceramic particles facilitated grain refinement in the SZ via the pinning effect, the SZ with the particles had a much smaller grain size than the SZ without the particles. Vickers hardness test, tensile test and Charpy impact test were conducted to evaluate the mechanical properties. Mechanical properties of the SZ with the ceramic particles were improved relative to those of the SZ without the particles. Vickers hardness (from 50 to 90 HV), tensile strength (from 117 to 253 MPa) and Charpy impact absorbed energy (from 4.2 to 5.6 J) of the SZ increased with the addition of ceramic particles.


2016 ◽  
Vol 835 ◽  
pp. 167-172
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
Tegar Rileh Argihono ◽  
Ryan Sutrisno

The effects of root opening process parameters on the phisical and mechanical properties of mild steel specimens of grade LR Gr A having dimensions 200 mm× 100 mm× 12 mm, welded by gas metal arc welding were investigated. The variation of root opening that used were 3 mm, 5 mm and 7 mm. The physical properties examined with regard with microstructure, macrosructure, and corrosion using optical microscope and stereozoom. The measured of mechanical properties with regard to strength, hardness and toughness using, tensile test, Vickers hardness Test, and Charpy impact test. The test results show the base metal had a hardness of approximately 110 VHN and a maximum hardness of approximately 190 VHN that corellates with microstructure of weld metals. Microstructure of base metal and HAZ are ferite and perlite, while microstructure of weld zone are acicular ferrite and grain boundary ferrite. The corrosion rate of weld metals with various root opening categorized as materials having excellent corrosion resistance value. Welding joints with opening roots 3 mm and 5 mm can be used for construction. All welded specimens exhibited fracture at base metals


Author(s):  
D. Franzen ◽  
B. Pustal ◽  
A. Bührig-Polaczek

Abstract Grades of high silicon ductile iron offer excellent combinations of static strength and ductility as well as good machinability due to their fully ferritic, solution strengthened matrix. As a result of elevated silicon contents, however, the ductile-to-brittle transition temperature in the Charpy impact test is significantly increased. Thus, minimum required Charpy impact energies cannot be met for many applications by using high silicon ductile iron. Therefore, alloys with lower strength and higher toughness properties are commonly used for many technical applications. The enormous lightweight construction potential of high silicon ductile iron can therefore not be fully exploited. The present investigation pursues the metallurgical approach of partially substituting silicon with molybdenum as an alternative strengthening element in order to improve the toughness properties while maintaining similar static mechanical properties. Molybdenum serves as a carbide-stabilising element in ductile iron, while simultaneously promoting ferrite formation and is therefore regarded to be suitable alloying element. In Charpy impact tests, the ductile-to-brittle transition temperature could be reduced by about 55 °C by reducing the silicon content to 2.95 wt% and adding 0.21 wt% molybdenum compared to a high silicon alloy. Additionally, it was possible to mathematically describe the transition behaviour of the studied alloys using nonlinear regression functions and to achieve a sufficient correlation of empirically determined and calculated data. This present metallurgical concept offers a promising metallurgical tool for further improving the toughness properties of alloyed ductile iron.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


Sign in / Sign up

Export Citation Format

Share Document