Effect of Nd on the Microstructure and Mechanical Properties of High Aluminum Zinc-Based Alloy

2011 ◽  
Vol 391-392 ◽  
pp. 564-568
Author(s):  
Ai Li Wei ◽  
Kun Yu Zhang ◽  
Xian Rong Li ◽  
Wei Liang

This work mainly investigated the influence of element Nd on the microstructure and mechanical properties of the Zn-25Al-5Mg-2.5Si alloys with different Nd contents. The tensile and hardness tests were carried out at room and elevated temperatures. The results show that the addition of element Nd leads to the grain refining and the formation of Al2Nd and NdZn2 phases in the microstructure, and the mechanical properties of the alloys rise at first and then drop with the increasing of Nd content. The optimization of microstructure and performance especially the tensile strength at high temperature is obtained when Nd content is 0.8 wt.%. It can result in increase of tensile strength by 48.8% and micro-hardness by 67.4% at 180。C.

2013 ◽  
Vol 652-654 ◽  
pp. 1059-1062
Author(s):  
Ai Li Wei ◽  
Xing Hai Liu ◽  
Kun Yu Zhang ◽  
Wei Liang

The microstructure and mechanical properties of the as-cast Zn-25Al-5Mg-2.5Si-xGd alloys at room and elevated temperature have been investigated in this work. The results show that the addition of element Gd leads to the grain refining and the formation of Al3Gd phase and GdZn12 phase in the microstructure, and the mechanical properties of the alloys rise at first and then drop with the Gd content increasing. When Gd content is 0.8wt.%, the optimization of microstructure and mechanical properties is obtained. The alloy can be increased by 13.9%, 37.7% and 45.6% in tensile strength and be increased by 13.4%, 76.9% and 78.2% in hardness at room temperature, 100°C and 180°C, respectively.


JOM ◽  
2021 ◽  
Author(s):  
Jiao Fang ◽  
Xixi Dong ◽  
Shouxun Ji

AbstractThe application of aluminum alloys at elevated temperatures has been attractive for decades, and Al-Ni-based alloys have recently been recognized as potential candidates. The effect of Mn on Al-4Ni alloy has been investigated in this work. Addition of Mn transformed the eutectics from Al3Ni/α-Al to Al9(Ni,Mn)2/α-Al phases. Mn also improved the tensile strength at both 25°C and 250°C. The yield strength at 25°C increased from 48 MPa to 92 MPa with 1.87% Mn and then to 117 MPa with 3.77% Mn. At 250°C, the yield strength increased from 35 MPa to 82 MPa with 1.87% Mn and then to 101 MPa with 3.77% Mn. The alloys with Mn also showed less strength loss than Al-4Ni alloy at 250°C. The eutectic Al9(Ni,Mn)2 phase showed good thermal stability. No coarsening was observed after 2000 h at 250°C.


2013 ◽  
Vol 685 ◽  
pp. 259-263 ◽  
Author(s):  
K. Subbaiah ◽  
Geetha Manivasagam ◽  
B. Shanmugarajan ◽  
S.R. Koteswara Rao

Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam welding at 3.5 kW incident power was conducted autogenously on 5 mm thick 5083-H321 aluminum alloy plates at different welding speeds. The mechanical properties and microstructural characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Both yield stress and tensile strength of the laser beam welded joint at the optimum welding speed were 88 % of base metal values. Experimental results indicate that the tensile strength and hardness of laser beam welds are affected by the variation of the intermetallic compounds.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 810 ◽  
Author(s):  
Defeng Mo ◽  
Yang Wang ◽  
Yongjian Fang ◽  
Tingfeng Song ◽  
Xiaosong Jiang

Dissimilar metal joining between titanium and kovar alloys was conducted using electron beam welding. Metallurgical bonding of titanium alloys and kovar alloys was achieved by using a Cu/Nb multi-interlayer. The effects of welding speed on weld appearance, microstructure and mechanical properties of welded joints were investigated. The microstructure of welded joints was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The mechanical properties of welded joints were investigated by tensile strength and micro-hardness tests. The results showed that welding speed had great effects on the weld appearance, microstructure, and mechanical properties of electron beam-welded joints. With an increase of welding speed, at the titanium alloy side, the amount of (Nb,Ti) solid solution was increased, while the formation of brittle FeTi was effectively suppressed. At the kovar alloy side, microstructure was mainly composed of soft Cu solid solution and some α-Fe + γ phases. In addition, higher welding speeds within a certain range was beneficial for eliminating the formation of cracks, and inhibiting the embrittlement of welded joints. Therefore, the tensile strength of welded joints was increased to about 120 MPa for a welding speed of 10 mm/s. Furthermore, the bonding mechanism of TC4/Nb/Cu/4J29 dissimilar welded joints had been investigated and detailed.


2019 ◽  
Vol 1 (3) ◽  
pp. 8
Author(s):  
Anitha P ◽  
Manik ChandraMajumder ◽  
Saravanan V ◽  
Rajakumar S

In this paper, standard SS304 austenitic stainless steel and SS430 ferritic steel cylindrical rods were fabricated by friction welding process by varying the frictional pressure and forge pressure in order to understand the effect of process parameter. The tensile strength and Vickers micro hardness tests were conducted for each fabricated joint to evaluate the mechanical properties of the welded specimen. It was found that sample S5 with friction pressure of 90 MPa and forging Pressure of 120 MPa has the high tensile strength value of 637 MPa and 372HV at the interface region. A detailed microstructural analysis was performed at the interface to reveal interconnecting of dissimilar metals.


2013 ◽  
Vol 320 ◽  
pp. 303-307 ◽  
Author(s):  
Hao Ran Geng ◽  
Peng Liu ◽  
Hua Wei Jiang ◽  
Bo Teng

Magnesium alloys are becoming ever more prevalent in automotive and aerospace industries as energy conservation and performance demands increase. However, it is limited on further application in the automotive field for its low strength compared with steel and aluminum alloys. Effects of Si addition on microstructure and mechanical properties of as-cast Mg-5%Sn magnesium alloy were also studied using SEM, XRD and tensile testing. The results show that the phases of as-cast alloy are composed of α-Mg, Mg2Sn; Mg2Si. The addition of Si suppresses the precipitation of the Mg2Sn, Product Chinese character shape phases of Mg2Si. With the increase of Si content, the effect becomes more apparent. When Si content is up to 1.25wt%, the grain refining effect reached best level. The average alloy grain size reduced from 90μm to 30μm, the tensile strength is the highest. The average tensile strength increased from 128 MPa to 156 MPa. When the Si added at 1.25wt% or less, the hardness and strength were improved with the increase of Si. When 1.25% Si was added, grain did not become further refinement. While Si content was continue to be increase, the tensile strength decreased.


Author(s):  
K. Giridharan ◽  
P. Sevvel ◽  
K. Senthilnathan ◽  
S. Muthukumaran ◽  
S. Padmanabhan

In this research article, the mechanical properties and microstructure analysis ofFriction Stir Welded (FSW) of dissimilar aluminium alloys AA8011-AA6082 were evaluated. The FSW tool with taper cylindrical shape of H13 steel was selected to fabricate the weld joints between the dissimilar alloys. In this regard, three different rotational speed tools, three welding speeds and an unvarying axial load of 7 kN are used in this investigation. The tool rotational speeds are 800 rpm, 1000 rpm and 1200 rpm. The tool travelling speeds are 25mm/min, 30 mm/min and 35 mm/min. These constraints are used to generate frictional heat and interface into the soft range where the joining process can take place between the two materials. The mechanical tests were carried out on the weld joints. Microstructure analysis, tensile and hardness tests were considered by changing the tool rotating speed, welding speed and maintaining a constant axial force during material joining process. The micro hardness of the FSW weld joints in the stir zone increased to increase the tool rotational speed as well as to maintain a low range of welding speed during material joining process. The micro hardness of the stir zone in the FSW weld joints is increased as to reduce the welding speed. It was found that the highest value of the tensile strength in the joints is made-up of using the taper-shaped tool at 800 rpm, welding speed of 35mm/min and unvarying downward force of 7kN. These identified parameters give sufficient mechanical properties and fewer defects in weld joints such as tensile strength of 68 N and micro hardness of 42 Hv. The tensile and hardness tests values are examined by the part of mechanical characterization and the values are correlated to recognize the superiority of the weld joint.


2005 ◽  
Vol 488-489 ◽  
pp. 629-632 ◽  
Author(s):  
Qu Dong Wang ◽  
Yongjun Chen ◽  
Jianguo Peng ◽  
Man Ping Liu ◽  
Wen Jiang Ding ◽  
...  

Microstructure and mechanical properties of AM50+xTi (x=0,0.01,0.1wt%) magnesium alloys extruded from as-cast and solution treated conditions have been studied. Results show that Ti element obviously refines the microstructure of AM50 magnesium alloy and Mg17Al12 phase. Only 0.01 wt% Ti addition can make the Mg17Al12 phase turn into particles and small rod-like shape. Ti addition improves tensile strength at room temperature, and obviously improves elongation at elevated temperatures up to 200°C. The AM50+xTi alloys extruded from as-cast have better tensile strength at room temperature and better elongation at 100°C, 150°C and 200°C than that of AM50+xTi alloys extruded from solution treatment; The plasticity of AM50 magnesium alloys increases with Ti content increasing and temperature increasing for the tensile fractograph.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3214 ◽  
Author(s):  
Zeng ◽  
Liu ◽  
Gao ◽  
Jiang ◽  
Yu ◽  
...  

Effects of T5 treatment on microstructure and mechanical properties at elevated temperature of hot-ring-rolled (HRRed) AZ80-Ag magnesium alloy were systematically investigated. Results show that, after aging at 175 °C for 36 h, discontinuous and continuous precipitates form inside grains, with the former one taking up a volume fraction of ~64.9%. T5 treatment improves the tensile strength at ambient temperature of the alloy but weakens its tensile strength and creep resistance at elevated temperatures (120–175 °C), indicating opposite effects of T5 on mechanical properties at ambient and elevated temperatures. During creep at 120–175 °C and under 70–90 MPa, the dynamic precipitation process in HRRed specimen is accelerated with increasing temperature. At 150–175 °C massive nucleation and growth of dynamic discontinuous precipitates could result in an atypical primary creep stage, consisting of deceleration and acceleration creep stages, which is reported in wrought Mg-Al-based alloy for the first time. Such primary creep stage can be eliminated by T5 treatment. Besides, diffusion-controlled dislocation creep is the dominant creep mechanism for both HRRed and T5 specimens.


2013 ◽  
Vol 800 ◽  
pp. 225-228 ◽  
Author(s):  
Xiao Jie Song ◽  
Quan An Li ◽  
San Ling Fu

The effects of Y and Gd on the microstructure and mechanical properties of AZ81 magnesium alloy were studied by alloy preparation, microstructure analysis and mechanical property testing. The results show that moderate addition of Y and Gd to AZ61 magnesium alloy can obviously refine grains of AZ61 alloy, and decrease the amount of Mg17Al12 phase. With the increase of alloying elements, the tensile strength and elongation of aged AZ61 magnesium alloy at the temperature ranging of 25°C~175°C rise at first and then drop.When content of Y and Gd is up to 2.7%,the values of tensile strength of the alloy at room temperature and 175°C are up to their maximums, 254MPa and 164MPa respectively, while the elongation of the alloy are 22.9%,18.7% respectively. Y and Gd improve the mechanical properties of AZ61 alloy because of the grain refining strengthening, solution strengthening and the dispersion strengthening.


Sign in / Sign up

Export Citation Format

Share Document