Preparation and Properties of CNTs-Ti3Al/B4C Composites

2011 ◽  
Vol 399-401 ◽  
pp. 377-380
Author(s):  
Yan Hua Fan ◽  
Li Hua Dong ◽  
Bo Yang Liu ◽  
Yan Sheng Yin

CNTs-TiAl/B4C composite has been obtained by high energy ball milling and hot press sintering. These technical process promoted the solid reaction and resulted in the formation of composites comprising Ti-Al, TiC, TiB2 and B4C. The SEM images and measurement of the mechanical properties proved that the addition of 1.5wt.% CNTs further improves the fracture toughness and the bending strength of TiAl/B4C composites.

2013 ◽  
Vol 589-590 ◽  
pp. 590-593 ◽  
Author(s):  
Min Wang ◽  
Jun Zhao

In order to investigate the effects of TiN content on Al2O3/TiN ceramic material (ATN), the ATN ceramic materials were prepared of TiN content in 30%, 40%, 50%, 60% in the condition of hot press sintering. The sintering temperature is 1700°C, the sintering press is 32MPa, and the holding time are 5min, 10min, 15min. The effects of TiN content on mechanical properties and microstructure of ATN ceramic materials were investigated by analyzing the bending strength, hardness, fracture toughness. The results show that ATN50 has the best mechanical property, its bending strength is 659.41MPa, vickers hardness is 13.79GPa, fracture toughness is 7.06MPa·m1/2. It is indicated that the TiN content has important effect on microstructure and mechanical properties of ATN ceramic materials.


2017 ◽  
Vol 726 ◽  
pp. 297-302
Author(s):  
Chang Chun Lv ◽  
Yu Jia Zhai ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

TiCN-based cermets were prepared by hot-press sintering through adding various amounts of AlN nanopowder (0-20 wt.%) into a 64 wt.% TiC0.5N0.5-10 wt.% WC-8.5 wt.% Mo-12.5 wt.% Ni-5 wt.% Co system. The microstructure and mechanical properties of the prepared cermets were investigated. For the prepared cermets, samples with 5 wt.% AlN nanopowder exhibited optimum mechanical properties of Vickers hardness 2191 HV10, bending strength 601 MPa, and fracture toughness 6.03 MPa.m1/2, respectively.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
In-Jin Shon ◽  
In-Yong Ko ◽  
Seung-Hoon Jo ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Nanopowders of 3NiAl and Al2O3were synthesized from 3NiO and 5Al powders by high-energy ball milling. Nanocrystalline Al2O3reinforced composite was consolidated by high-frequency induction-heated sintering within 3 minutes from mechanochemically synthesized powders of Al2O3and 3NiAl. The advantage of this process is that it allows very quick densification to near theoretical density and inhibition grain growth. Nanocrystalline materials have received much attention as advanced engineering materials with improved physical and mechanical properties. The relative density of the composite was 97%. The average Vickers hardness and fracture toughness values obtained were 804 kg/mm2and 7.5 MPa⋅m1/2, respectively.


2008 ◽  
Vol 368-372 ◽  
pp. 1764-1766 ◽  
Author(s):  
Yu Jin Wang ◽  
Lei Chen ◽  
Tai Quan Zhang ◽  
Yu Zhou

The ZrC-W composites with iron as sintering additive were fabricated by hot-press sintering. The densification, microstructure and mechanical properties of the composites were investigated. The incorporation of Fe beneficially promotes the densification of ZrC-W composites. The relative density of the composite sintered at 1900°C can attain 95.3%. W2C phase is also found in the ZrC-W composite sintered at 1700°C. The content of W2C decreases with the increase of sintering temperature. However, W2C phase is not identified in the composite sintered at 1900°C. The flexural strength and fracture toughness of the composites are strongly dependent on sintering temperature. The flexural strength and fracture toughness of ZrC-W composite sintered at optimized temperature of 1800°C are 438 MPa and 3.99 MPa·m1/2, respectively.


2013 ◽  
Vol 785-786 ◽  
pp. 533-536 ◽  
Author(s):  
Shi Bao Li ◽  
Yi Min Zhao ◽  
Jian Feng Zhang ◽  
Cheng Xie ◽  
Dong Mei Li ◽  
...  

A novel PMMA-ZrO2 composite (PZC) was prepared by resin infiltrated to ceramic method. The composite mechanical properties were evaluated and correlated to its microstructure. Partially sintered zirconia ceramics (PSZC) were made by isostatic pressing and partially sintering. Subsequently, the PZC was prepared by vacuum infiltrating prepolymerized MMA into PSZC, followed by in-situ polymerization. When PSZC-70% was used as the matrix, the bending strength, elastic modulus, and fracture toughness of the prepared composite i.e PZC-70% were 202.56±12.09 MPa, 58.71±3.98 GPa, and 4.60±0.26 MPa·m1/2, corresponding to 25.69%, 23.31%, and 169.01% improvement, respectively, in comparison with the control matrix. Among them, the fracture toughness improvement was the most prominent. According to SEM images of the fracture surfaces, each pore of zirconia skeleton was filled by organic resin contributing to the bending strength improvement. These weak interfaces between zirconia skeleton and organic resin absorbed energy and terminated the growth of microcracks which might be responsible for significant improvement in fracture toughness. This PZC material is anticipated to be a new member of the dental CAD/CAM family.


2013 ◽  
Vol 737 ◽  
pp. 67-73 ◽  
Author(s):  
Muhammad Ghozali ◽  
Agus Haryono

The combination between synthetic polyolefin with natural polymer such as cellulose, starch and chitosan can stimulate biodegradation processes of waste plastics such as polyethylene (PE), polypropylene (PP) and other conventional plastics. In this work, PVC (polyvinyl chloride) biocomposite was prepared by compounding cellulose particle into PVC matrix in the presence of PVC-g-maleic anhydride as a compatibilizer. Cellulose nanoparticles were prepared by physical top-down method after milling by using High-Energy Ball-mill. The diameter size of cellulose nanoparticle was obtained as 170 nm. Cellulose particles were added as filler with ratio of 10-30 phr in PVC matrix. PVC biocomposites was prepared as a sheet film with the thickness of 0.3 mm by hot-press method. The addition of cellulose particle into PVC matrix was examined in various filler volumes and various cellulose particle sizes. The obtained PVC composite films were characterized by means of Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Fourier-Transformed Infrared (FTIR) spectroscopy. The rheological and mechanical properties of PVC and cellulose composites were investigated as a function of surface structure and filler volume fraction.


2020 ◽  
Vol 20 (7) ◽  
pp. 4253-4256
Author(s):  
Seong-Eun Kim ◽  
Jin-Kook Yoon ◽  
In-Jin Shon

Nb2O5 and Zr powders at a molar ratio of 1:2.5 were milled using a high-energy ball mill. The mixture powders produced Nb and ZrO2 nanopowders through a solid replacement reaction (Nb2O5+ 2.5Zr 2Nb + 2.5ZrO2). The synthesized nanopowders were consolidated via high-frequency induction heated sintering (HFIHS) within two min. The mechanical properties (hardness and fracture toughness) of nanostructured 2Nb–2.5ZrO2 composite were then evaluated. Both the hardness and fracture toughness of the 2Nb–2.5ZrO2 composite were higher than those of monolithic ZrO2.


2019 ◽  
Vol 54 (6) ◽  
pp. 765-772 ◽  
Author(s):  
Ajay Kumar Vemulapalli ◽  
Rama Murty Raju Penmetsa ◽  
Ramanaiah Nallu ◽  
Rajesh Siriyala

Hydroxyapatite is a very attractive material for artificial implants and human tissue restorations because they accelerate bone growth around the implant. The hydroxyapatite nanocomposites (HAp/TiO2) were produced by using high energy ball milling. X-ray diffraction studies revealed the formation of HAp and TiO2 composites. Cubic-like crystals with boundary morphologies were observed; it was also found that the grain size gradually increased with the increase in TiO2 content. It was found that the mechanical properties (hardness, Young's modulus, fracture toughness, flexural strength, and compression strength)of the composites significantly improved with the addition of TiO2, which was sintered at 1200℃. These properties were then also correlated with the microstructure of the composites. This paper investigates the effect of titania (TiO2 = 0, 5, 10, 15, 20, and 25 wt%) addition on the microstructure and mechanical properties of hydroxyapatite (Ca10(PO4)6(OH)2) nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document